Abstract:The current study involves the coating of Titanium-Zirconium-Molybdenum (TZM) alloy with FeCrAl through plasma thermal spraying which proved effective in improving the oxidation resistance of the substrate. A post-laser surface melting treatment further enhanced the surface protection of the TZM alloy. Oxidation tests conducted at 1100˝C in air indicated that some Mo oxides were formed at the surface but a relatively small amount of weight reduction was observed for FeCrAl-coated TZM alloys up to 60 min of treatment. The post-laser surface treatment following the plasma thermal spray process apparently delayed the severe oxidation process and surface spalling of the alloy. It was suggested that the slow reduction in weight in the post-laser-treated specimen was related to fewer defects in the coating layer. It was also found that a surface reaction layer formed through the diffusion of Fe into the Mo alloy substrate at high temperature. The layer mainly consisted of Fe-saturated Mo and FeMo intermetallic compounds. In order to observe the corrosion behavior of the laser-treated alloy in 3.5% NaCl solution, electrochemical characteristics were also investigated. A proposed equivalent circuit model for the specimen indicated localized corrosion of coated alloy with some permeable defects in the coating layer.
Laser coating of a CrAl layer on Zircaloy-4 alloy was carried out for the surface protection of the Zr substrate at high temperatures, and its microstructural and thermal stability were investigated. Significant mixing of CrAl coating metal with the Zr substrate occurred during the laser surface treatment, and a rapidly solidified microstructure was obtained. A considerable degree of diffusion of solute atoms and some intermetallic compounds were observed to occur when the coated specimen was heated at a high temperature. Oxidation appears to proceed more preferentially at Zr-rich region than Cr-rich region, and the incorporation of Zr into the CrAl coating layer deteriorates the oxidation resistance because of the formation of thermally unstable Zr oxides.
The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.
The possibility of chemical precipitation for recycled ammonium paratungstate (APT) was studied. WO 3 particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT:DI-water. At the 500℃ sintering temperature, the X-ray diffraction results showed that APT completely decomposed to WO 3 . For the granulated powder WC-Co, vacuum heat treatment at proper temperatures increases tap density and flow-ability. Hardness of the WC-Co thermal spray coating layer was measured in the range HV 831~1266. Spray conditions for the best characteristic values were an oxygen flow rate=1500 scfh, a fuel flow rate = 5.25gph and a gun distance = 320mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.