The welding of end plugs to cladding tubes is a critical process in the manufacture of pressurized water reactor (PWR) nuclear fuel rods. The resistance butt welding method is commonly used for this purpose in production. In this paper, we present an analysis of the flow of foreign substances within the weld joint during the tube-cap welding process of PWR nuclear fuel rods, using SORPAS 2D software. The welding process generates foreign substances such as oxide scales, welding fumes, and spatters, which can negatively impact the quality of the weld. Additionally, carbide-based ceramic materials with higher melting temperatures than the base metal have been found within the weld joint in some cases, which can also affect the quality of the weld. To simulate the intrusion of foreign substances with higher melting temperatures than the base material (zirconium alloy) during welding, we conducted a simulation and analyzed the flow of foreign substances. Based on this study, we expected to enhance the reliability and stability of the tube-cap welding process of PWR nuclear fuel rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.