This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.
This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
The aim of this short review is to provide some background information as well as an overview of a range of modern optical storage phosphor materials and their applications in dosimetry, computed radiography, and radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.