Vanadium nitride catalysts were synthesized by the temperature-programmed reduction of vanadium oxide (V2O5) with pure NH3. The resulting materials contained VN or VN with a negligible amount of vanadium sesquioxide (V2O3) in the bulk after the nitrization of V oxides, indicating that the structural properties of these materials were strong functions of the heating rate and space velocity employed. The V nitrides proved to be active NH3 decomposition catalysts. Since the activity varied with changes in the surface area and particle size, ammonia decomposition over the V nitrides appeared to be structure-sensitive. While detailed relationships between the catalytic activity and surface composition could not be ascertained, there was a direct correlation between the activity, and the surface area and grain-boundary length. The most active catalyst, VN-c, which contained the δ-phase, had the greatest grain-boundary length. The catalytic properties of V nitrides were comparable or superior to those of a Ni/SiO2·Al2O3 catalyst. These results suggested that the characteristics of the active sites in the vanadium nitrides were similar to those in the Group 8—10 metal-based catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.