Equalization of satellite communication using complex-bilinear recurrent neural network (C-BLRNN) is proposed. Since the BLRNN is based on the bilinear polynomial, it can be used in modeling highly nonlinear systems with time-series characteristics more effectively than multilayer perceptron type neural networks (MLPNN). The BLRNN is first expanded to its complex value version (C-BLRNN) for dealing with the complex input values in the paper. C-BLRNN is then applied to equalization of a digital satellite communication channel for M-PSK and QAM, which has severe nonlinearity with memory due to traveling wave tube amplifier (TWTA). The proposed C-BLRNN equalizer for a channel model is compared with the currently used Volterra filter equalizer or decision feedback equalizer (DFE), and conventional complex-MLPNN equalizer. The results show that the proposed C-BLRNN equalizer gives very favorable results in both the MSE and BER criteria over Volterra filter equalizer, DFE, and complex-MLPNN equalizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.