A new sodium–sulfur (Na–S) flow battery utilizing molten sodium metal and flowable sulfur‐based suspension as electrodes is demonstrated and analyzed for the first time. Unlike the conventional flow battery and the high‐temperature Na–S battery, the proposed flow battery system decouples the energy and power thermal management by operating at different temperatures for the storage tank (near room temperature) and the power stack (100–150 °C). The new Na–S flow battery offers several advantages such as easy preparation and integration of the electrode, low energy efficiency loss due to temperature maintenance, great tolerance of the volume change of the metal anode, and efficient utilization of sulfur. The Na–S flow battery has an estimated system cost in the range of $50–100 kWh−1 which is very competitive for grid‐scale energy storage applications.
The study focuses on evaluating fully-coupled conjugate heat transfer simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM-LES and the IBM-CHT frameworks are validated by simulating purely convective heat transfer in the ribbed duct, and a laminar boundary layer flow over a 2D flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. It is shown that the time scale disparity between turbulent fluid flow and heat conduction in solid can be overcome by using an artificially high solid thermal diffusivity. While the diffusivity impacts the instantaneous fluctuations in temperature and heat transfer it has an insignificant effect on the predicted Nusselt number. Comparison between IBM-LES-CHT and iso-flux heat transfer simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to experiment and another LES conjugate simulation. The present LES calculations predict higher EFs on the leading face of the rib and show a different trend at the trailing face when CHT is activated.
The present study focuses on evaluating fully-coupled conjugate heat transfer simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM-LES and the IBM-CHT frameworks are validated prior to the main simulations by simulating purely convective heat transfer in the ribbed duct, and a laminar boundary layer flow over a 2D flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity. It is shown that while the diffusivity impacts the instantaneous fluctuations in temperature, heat transfer and Nusselt numbers, it has an insignificantly small effect on the mean Nusselt number. Comparison between IBM-LES-CHT and iso-flux heat transfer simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to experiment and another LES conjugate simulation. Even though there is a mismatch between IBM-LES-CHT predictions and other two studies at the front face of the rib, the area-averaged EF compares reasonably well in other regions between IBM-LES-CHT prediction and the comparative studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.