The effects of salinity on various ecophysiological parameters of Ulva pertusa such as growth, nutrient uptake, photosynthetic performance and internal nutrient composition were tested. U. pertusa was collected from an eelgrass bed in a semi-protected embayment on the southwest coast of Korea. Under salinity regimes from 5 to 40 psu, the specific growth rates (µ) of U. pertusa ranged from 0.019 to 0.032 d-1. Maximum growth rate was observed at 20 psu, and minimum at 40 psu. This species showed various uptake rates for nitrate and phosphate. Nutrient uptake was noticeably higher at intermediate salinity levels, and lower at both extremes. Salinity significantly influenced chlorophyll-a content and effective quantum yield. Tissue nitrogen content ranged from 1.5 to 2.9% N (dry weight), whereas tissue phosphorus ranged from 0.1 to 0.14% P (dry weight). The N : P ratio in the tissue of U. pertusa was considerably higher, ranging from 30 to 50. Increased growth at lower salinity suggests that the initial growth rate of U. pertusa is greater during the rainy season (i.e., late spring and early summer) than any other season during the year. The appearance of an Ulva bloom in eelgrass beds may be triggered by salinity more than by other environmental factors such as light and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.