Weissella hellenica SKkimchi3 produces the higher exopolysaccharide (EPS) on sucrose than lactose, glucose, and fructose at pH 5 and 20 degrees C. Sucrose was exclusively used to cultivate SKkimchi3 in all experiments base on the EPS production tests. The molecular mass of EPS, as determined by gel permeation chroma-tography, was 203,000. (1)H and (13)C NMR analysis indicated that the identity of EPS may be a glucan. When EPS, starch, and cellulose was treated with a-amylase, glucoamylase, glucosidase, and cellulase, glucose was produced from starch and cellulose but was not produced from EPS. Based on HPLC analysis, elemental analysis, (1)H and (13)C NMR analysis, and enzymatic hydrolysis tests, EPS was estimated to be a glucan. EPS suspension was not precipitated even by centrifugation at 10,000xg for 60 min, and EPS made the fermented milk and bacterial culture viscous.
A bacterium growing inside yeast cytoplasm was observed by light microscope without staining. The bacterium was separately stained from yeast cell by a fluorescent dye, 4',6-diamidino-2-phenylindole (DAPI). The bacterium actively moved inside yeast cytoplasm and propagated in company with the yeast growth. The bacterium was separated from the yeast cytoplasm by selective disruption of yeast cells and the yeast without the intracellular bacterium (YWOB) was obtained by selective inactivation of bacterial cells. The yeast and the intracellular bacterium were identified as Candida tropicalis and Microbacterium sp., respectively. The length of Microbacterium sp. and C. tropicalis measured with SEM image was smaller than 0.5 microm and was larger than 5 microm, respectively. The yeast with the intracellular bacterium (YWIB) grew in a starch-based medium but the YWOB was not C. tropicalis has neither extracellular nor intracellular saccharification enzyme. Glucose was produced from starch by the extracellular crude enzyme (culture fluid) of Microbacterium sp. YWIB produced significantly more ethanol from glucose than YWOB but did not from starch. Conclusively, C. tropicalis is thought to catabolize starch dependent upon Microbacterium sp. growing in its cytoplasm and furnish stable habitat for the Microbacterium sp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.