The middle ear consists of a tympanic membrane, ligaments, tendons, and three ossicles. An important function of the tympanic membrane is to deliver exterior sound stimulus to the ossicles and inner ear. In this study, the responses of the tympanic membrane in a human ear were measured and compared with those of a finite element model of the middle ear. A laser Doppler vibrometer (LDV) was used to measure the dynamic responses of the tympanic membrane, which had the measurement point on the cone of light of the tympanic membrane. The measured subjects were five Korean male adults and a cadaver. The tympanic membranes were stimulated using pure-tone sine waves at 18 center frequencies of one-third octave band over a frequency range of 200 Hz ~10 kHz with 60 and 80 dB sound pressure levels. The measured responses were converted into the umbo displacement transfer function (UDTF) with a linearity assumption. The measured UDTFs were compared with the calculated UDTFs using a finite element model for the Korean human middle ear. The finite element model of the middle ear consists of three ossicles, a tympanic membrane, ligaments, and tendons. In the finite element model, the umbo displacements were calculated under a unit sound pressure on the tympanic membrane. The UDTF of the finite element model exhibited good agreement with that of the experimental one in low frequency range, whereas in higher frequency band, the two response functions deviated from each other, which demonstrates that the finite element model should be updated with more accurate material properties and/or a frequency dependent material model.
A Finite element (FE) model of a human middle ear is developed, assessed, and updated using a statistical approach. The model consists of three ossicles (malleus, incus, and stapes), a tympanic membrane, tendons, and ligaments. The uncertainty of the model input parameters associated with the material properties and boundary conditions are considered in order to assess the validity of the model. The variation of the umbo displacement transfer function (UDTF) as a result of the uncertainty of the model input parameters is estimated and compared with those from experiments. Using the analysis of variance (ANOVA) with a three-level orthogonal array, the most important calibration parameters, which are composed of stiffness-related and density variables, are selected. Furthermore, a metric for statistical calibration is introduced. Through minimizing the calibration metric, the calibration parameters are updated in order to enhance the performance of the middle ear FE model. The proposed statistical calibration framework effectively improves the middle ear FE model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.