Purpose: Palbociclib (PD-0332991) is the first selective cyclindependent kinase (CDK) 4/6 inhibitor approved for metastatic breast cancer. Hematologic effects, especially neutropenia, are dose-limiting adverse events for palbociclib in humans.Experimental Design: Reversible hematologic effects and bone marrow hypocellularity have been identified in toxicology studies in rats and dogs after palbociclib treatment. To understand the mechanism by which the hematologic toxicity occurs, and to further differentiate it from the myelotoxicity caused by cytotoxic chemotherapeutic agents, an in vitro assay using human bone marrow mononuclear cells (hBMNC) was utilized.Results: This work demonstrated that palbociclib-induced bone marrow suppression occurred through cell-cycle arrest, with no apoptosis at clinically relevant concentrations, was not lineagespecific, and was reversible upon palbociclib withdrawal. In contrast, treatment with chemotherapeutic agents (paclitaxel and doxorubicin) resulted in DNA damage and apoptotic cell death in hBMNCs. In the presence or absence of the antiestrogen, palbociclib-treated hBMNCs did not become senescent and resumed proliferation following palbociclib withdrawal, consistent with pharmacologic quiescence. The breast cancer cells, MCF-7, conversely, became senescent following palbociclib or antiestrogen treatment with additive effects in combination and remained arrested in the presence of antiestrogen.Conclusions: Palbociclib causes reversible bone marrow suppression, clearly differentiating it from apoptotic cell death caused by cytotoxic chemotherapeutic agents. This study also distinguished the cell-cycle arresting action of palbociclib on normal bone marrow cells from the senescent effects observed in breast cancer cells. These results shed light on the mechanism and support risk management of palbociclib-induced bone marrow toxicity in the clinic.
Lysosomes are acidic organelles essential for degradation and cellular homoeostasis and recently lysosomes have been shown as signaling hub to respond to the intra and extracellular changes (e.g. amino acid availability). Compounds including pharmaceutical drugs that are basic and lipophilic will become sequestered inside lysosomes (lysosomotropic). How cells respond to the lysosomal stress associated with lysosomotropism is not well characterized. Our goal is to assess the lysosomal changes and identify the signaling pathways that involve in the lysosomal changes. Eight chemically diverse lysosomotropic drugs from different therapeutic areas were subjected to the evaluation using the human adult retinal pigmented epithelium cell line, ARPE-19. All lysosomotropic drugs tested triggered lysosomal activation demonstrated by increased lysosotracker red (LTR) and lysosensor green staining, increased cathepsin activity, and increased LAMP2 staining. However, tested lysosomotropic drugs also prompted lysosomal dysfunction exemplified by intracellular and extracellular substrate accumulation including phospholipid, SQSTM1/p62, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and opsin. Lysosomal activation observed was likely attributed to lysosomal dysfunction, leading to compensatory responses including nuclear translocation of transcriptional factors TFEB, TFE3 and MITF. The adaptive changes are protective to the cells under lysosomal stress. Mechanistic studies implicate calcium and mTORC1 modulation involvement in the adaptive changes. These results indicate that lysosomotropic compounds could evoke a compensatory lysosomal biogenic response but with the ultimate consequence of lysosomal functional impairment. This work also highlights a pathway of response to lysosomal stress and evidences the role of TFEB, TFE3 and MITF in the stress response.
The ability to predict the incidence of chemotherapy-induced neutropenia in early drug development can inform risk monitoring and mitigation strategies, as well as decisions on advancing compounds to clinical trials. In this report, a physiological model of granulopoiesis that incorporates the drug's mechanism of action on cell cycle proliferation of bone marrow progenitor cells was extended to include the action of the cytotoxic agents paclitaxel, carboplatin, doxorubicin, and gemcitabine. In vitro bone marrow studies were conducted with each compound, and results were used to determine the model's drug effect parameters. Population simulations were performed to predict the absolute neutrophil count (ANC) and incidence of neutropenia for each compound, which were compared to results reported in the literature. In addition, using the single agent in vitro study results, the model was able to predict ANC time course in response to paclitaxel plus carboplatin in combination, which compared favorably to the results reported in a phase 1 clinical trial of 46 patients (r 2 = 0.70). Model simulations were used to compare the relative risk (RR) of neutropenia in patients with high baseline ANCs for five chemotherapeutic regimens: doxorubicin (RR = 0.59), paclitaxel plus carboplatin combination (RR = 0.079), carboplatin (RR = 0.047), paclitaxel (RR = 0.031), and gemcitabine (RR = 0.013). Finally, the model was applied to quantify the reduced incidence of neutropenia with coadministration of pegfilgrastim or filgrastim, for both paclitaxel and the combination of paclitaxel plus carboplatin. The model provides a framework for predicting clinical neutropenia using in vitro bone marrow studies of anticancer agents that may guide drug development decisions.
Recently three different cyclin-dependent kinase 4 and 6 (CDK4/6) dual inhibitors were approved for the treatment of breast cancer (palbociclib, ribociclib, and abemaciclib), all of which offer comparable therapeutic benefits. Their safety profiles, however, are different. For example, neutropenia is observed at varying incidences in patients treated with these drugs; however, it is the most common adverse event for palbociclib and ribociclib, whereas diarrhea is the most common adverse event observed in patients treated with abemaciclib. To understand the mechanism of diarrhea observed with these drugs and in an effort to guide the development of safer drugs, we compared the effects of oral administration of palbociclib, ribociclib, and abemaciclib on the gastrointestinal tract of rats using doses intended to produce comparable CDK4/6 inhibition. Rats administered abemaciclib, but not palbociclib or ribociclib, had fecal alterations, unique histopathologic findings, and distinctive changes in intestinal gene expression. Morphologic changes in the intestine were characterized by proliferation of crypt cells, loss of goblet cells, poorly differentiated and degenerating enterocytes with loss of microvilli, and mucosal inflammation. In the jejunum of abemaciclib-treated rats, downregulation of enterocyte membrane transporters and upregulation of genes associated with cell proliferation were observed, consistent with activation of the Wnt pathway and downstream transcriptional regulation. Among these CDK4/6 inhibitors, intestinal toxicity was unique to rats treated with abemaciclib, suggesting a mechanism of toxicity not due to primary pharmacology (CDK4/6 inhibition), but to activity at secondary pharmacologic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.