The liver is covered by visceral peritoneum except at the bare area, bed of the gallbladder, and porta hepatis. The investing peritoneum becomes contiguous with the adjacent structures such as the diaphragmatic peritoneum, lesser omentum, and ligamentum teres. An inflammatory process or tumors involving the perihepatic space are usually affected by intraperitoneal flow dynamics, which depend on the anatomy of the recess as well as gravity and negative subdiaphragmatic pressure. Pathologic conditions that occur in the perihepatic space include abnormal air, fatty masses, conditions producing fluid attenuation at computed tomography (CT), and soft-tissue masses. Enhancement of the hepatic capsule indicates inflammation, as is seen in Fitz-Hugh-Curtis syndrome. The perihepatic ligaments may be invaded by various conditions by means of direct invasion, subperitoneal extension, or extension along the lymphatic vessels. Knowledge of the normal anatomy of the perihepatic space together with the clinical history and characteristic features at CT can assist the radiologist in making the correct diagnosis.
Various mucin-producing neoplasms originate in different abdominal and pelvic organs. Mucinous neoplasms differ from non-mucinous neoplasms because of the differences in clinical outcome and imaging appearance. Mucinous carcinoma, in which at least 50% of the tumor is composed of large pools of extracellular mucin and columns of malignant cells, is associated with a worse prognosis. Signet ring cell carcinoma is characterized by large intracytoplasmic mucin vacuoles that expand in the malignant cells with the nucleus displaced to the periphery. Its prognosis is also generally poor. In contrast, intraductal papillary mucinous neoplasm of the bile duct and pancreas, which is characterized by proliferation of ductal epithelium and variable mucin production, has a better prognosis than other malignancies in the pancreaticobiliary tree. Imaging modalities play a critical role in differentiating mucinous from non-mucinous neoplasms. Due to high water content, mucin has a similar appearance to water on ultrasound (US), computed tomography (CT), and magnetic resonance imaging, except when thick and proteinaceous, and then it tends to be hypoechoic with fine internal echoes or have complex echogenicity on US, hyperdense on CT, and hyperintense on T1- and hypointense on T2-weighted images, compared to water. Therefore, knowledge of characteristic mucin imaging features is helpful to diagnose various mucin-producing neoplastic conditions and to facilitate appropriate treatment.
AIMTo evaluate portal vein (PV) stenosis and stent patency after hepatobiliary and pancreatic surgery, using abdominal computed tomography (CT).METHODSPercutaneous portal venous stenting was attempted in 22 patients with significant PV stenosis (> 50%) - after hepatobiliary or pancreatic surgery - diagnosed by abdominal CT. Stents were placed in various stenotic lesions after percutaneous transhepatic portography. Pressure gradient across the stenotic segment was measured in 14 patients. Stents were placed when the pressure gradient across the stenotic segment was > 5 mmHg or PV stenosis was > 50%, as observed on transhepatic portography. Patients underwent follow-up abdominal CT and technical and clinical success, complications, and stent patency were evaluated.RESULTSStent placement was successful in 21 patients (technical success rate: 95.5%). Stents were positioned through the main PV and superior mesenteric vein (n = 13), main PV (n = 2), right and main PV (n = 1), left and main PV (n = 4), or main PV and splenic vein (n = 1). Patients showed no complications after stent placement. The time between procedure and final follow-up CT was 41-761 d (mean: 374.5 d). Twenty stents remained patent during the entire follow-up. Stent obstruction - caused by invasion of the PV stent by a recurrent tumor - was observed in 1 patient in a follow-up CT performed after 155 d after the procedure. The cumulative stent patency rate was 95.7%. Small in-stent low-density areas were found in 11 (55%) patients; however, during successive follow-up CT, the extent of these areas had decreased.CONCLUSIONPercutaneous transhepatic stent placement can be safe and effective in cases of PV stenosis after hepatobiliary and pancreatic surgery. Stents show excellent patency in follow-up abdominal CT, despite development of small in-stent low-density areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.