BackgroundThe aim of this study
is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(dl-lactide-co-glycolide)/poly(ethylene glycol) copolymer.ResultsVorinostat-NPs exhibited spherical shapes with sizes <100 nm. Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one.ConclusionsOur results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma.Graphical abstractLocal delivery strategy of vorinostat-NPs against cholangiocarcinomas.
Background: Cholangiocarcinoma is a malignant tumor arising from the epithelium of the bile ducts. In this study, we prepared sorafenib-loaded biliary stents for potential application as drug-delivery systems for localized treatment of extrahepatic cholangiocarcinoma. Methods: A sorafenib-coated metal stent was prepared using an electrospray system with the aid of poly(ε-caprolactone) (PCL), and then its anticancer activity was investigated using human cholangiocellular carcinoma (HuCC)-T1 cells in vitro and a mouse tumor xenograft model in vivo. Anticancer activity of sorafenib against HuCC-T1 cells was evaluated by the proliferation test, matrix metalloproteinase (MMP) activity, cancer cell invasion, and angiogenesis assay in vitro and in vivo. Results: The drug-release study showed that the increased drug content on the PCL film induced a faster drug-release rate. The growth of cancer cells on the sorafenib-loaded PCL film surfaces decreased in a dose-dependent manner. MMP-2 expression of HuCC-T1 cells gradually decreased according to sorafenib concentration. Furthermore, cancer cell invasion and tube formation of human umbilical vein endothelial cells significantly decreased at sorafenib concentrations higher than 10 mM. In the mouse tumor xenograft model with HuCC-T1 cells, sorafenib-eluting PCL films significantly inhibited the growth of tumor mass and induced apoptosis of tumor cells. Various molecular signals, such as B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter, Bcl-x, caspase-3, cleaved caspase-3, Fas, signal transducer and activator of transcription 5, extracellular signal-regulated kinases, MMP-9 and pan-janus kinase/stress-activated protein kinase 1, indicated that apoptosis, inhibition of growth and invasion was cleared on sorafenibeluting PCL films. Conclusion: These sorafenib-loaded PCL films are effective in inhibiting angiogenesis, proliferation and invasion of cancer cells. We suggest that sorafenib-loaded PCL film is a promising candidate for the local treatment of cholangiocarcinoma.
PurposeEpigallocatechin-3-gallate (EGCG) is an antioxidant agent derived from green tea. Because it has chemopreventive and anti-invasive effect against various cancer cells, EGCG can be used to inhibit proliferation and invasion of cholangiocarcinoma (CCA) cells.MethodsThe anticancer effects of EGCG were studied using human CCA cells (HuCC-T1). Apoptosis was analyzed by Western blotting. Invasion and migration of cancer cells were assessed with Matrigel® and wound healing assays. An animal tumor xenograft model of HuCC-T1 was used to study the in vivo antitumor activities of EGCG.ResultsEGCG effectively inhibited the growth of HuCC-T1 cells with no adverse effects on the viability of 293T cells. EGCG induced apoptotic cell death at 5 µg/mL concentration. It inhibited the expression of mutant p53 and induced apoptotic molecular signals such as Bax/Bcl-2, Caspase, and cytochrome C. Furthermore, EGCG dose-dependently inhibited the activity of matrix metalloproteinase (MMP)-2/9, invasion, and migration. In the animal tumor xenograft model of HuCC-T1 cells, EGCG was subcutaneously administered beside the tumor for local treatment. EGCG efficiently inhibited growth of the tumor and suppressed carcinogenic molecular signals such as Notch1, MMP-2/9, and proliferating cell nuclear antigen.ConclusionEGCG induced apoptosis of cancer cells without adverse effects on normal cells. EGCG inhibited growth, invasion, and migration of HuCC-T1 cells. We suggest EGCG as a promising candidate for local treatment of CCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.