Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution.
Complex coacervates are a dense liquid phase of oppositely charged polyions formed by the associative separation of a mixture of polyions. Coacervates have been widely employed in many fields including the pharmaceutical, cosmetic, and food industries due to their intriguing interfacial and bulk material properties. More recently, attempts to develop an effective underwater adhesive have been made using complex coacervates that are based on recombinant mussel adhesive proteins (MAPs) due to the water immiscibility of complex coacervates and the adhesiveness of MAPs. MAP-based complex coacervates contribute to our understanding of the physical nature of complex coacervates and they provide a promising alternative to conventional invasive surgical repairs. Here, this review provides an overview of recombinant MAP-based complex coacervations, with an emphasis on their characterization and the uses of such materials for applications in the fields of biomedicine and tissue engineering.
The current concept of the order Asaphida was proposed to accommodate some Cambrian and Ordovician trilobite clades that are characterized by the possession of a ventral median suture. The family Tsinaniidae was recently suggested to be a member of the order Asaphida on the basis of its close morphological similarity to Asaphidae. Postembryonic development of the tsinaniid trilobite, Tsinania canens, from the Furongian (late Cambrian) Hwajeol Formation of Korea, reveals that this trilobite had an adult-like protaspis. Notable morphological changes with growth comprise the effacement of dorsal furrows, sudden degeneration of pygidial spines, regression of genal spines, and loss of a triangular rostral plate to form a ventral median suture. Programmed cell death may be responsible for degenerating the pygidial and genal spines during ontogeny. Morphological changes with growth, such as the loss of pygidial spines, modification of pleural tips, and effacement of dorsal furrows, suggest that T. canens changed its life mode during ontogeny from benthic crawling to infaunal. The protaspid morphology and the immature morphology of T. canens retaining genal and pygidial spines suggest that tsinaniids bear a close affinity to leiostegioids of the order Corynexochida. Accordingly, development of a ventral median suture in T. canens demonstrates that the ventral median suture could have evolved polyphyletically, and thus the current concept of the order Asaphida needs to be revised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.