Metrics & MoreArticle Recommendations CONSPECTUS: All-solid-state batteries (ASSBs) are considered to be a next-generation energy storage concept that offers enhanced safety and potentially high energy density. The identification of solid electrolytes (SEs) with high ionic conductivity was the stepping-stone that enabled the recent surge in activity in this research area. Among the various types of SEs, including those based on oxides, sulfides, polymers, and hybrids thereof, sulfide-based SEs have gained discernible attention owing to their exceptional room temperature ionic conductivity comparable even to those of their liquid electrolyte counterparts. Moreover, the good deformability of sulfide SEs renders them suitable for reducing the interfacial resistance between particles, thereby obviating the need for high-temperature sintering. Nevertheless, sulfide-based ASSB technology still remains at the research stage without any manufacturing schemes having been established. This state of affairs originates from the complex challenges presented by various aspects of these SEs: their weak stability in air, questions surrounding the exact combination of slurry solvent and polymeric binder for solution-based electrode fabrication, their high interfacial resistance resulting from solid particle contacts, and limited scalability with respect to electrode fabrication and cell assembly. In this Account, we review recent developments in which these issues were addressed by starting with the materials and moving on to processing, focusing on new trials. As for enhancing the air stability of sulfide SEs, strengthening the metal−sulfur bond based on the hard−soft acid−base (HSAB) theory has yielded the most notable results, although the resulting sacrificed energy density and weakened anode interface stability would need to be resolved. Novel electrode fabrication techniques that endeavor to overcome the critical issues originating from the use of sulfide SEs are subsequently introduced. The wet chemical coating process can take advantage of the know-how and facilities inherited from the more established lithium-ion batteries (LIBs). However, the dilemmatic matter of contention relating to the polarity mismatch among the slurry solvent, SE, and binder requires attention. Recent solutions to these problems involved the exploration of various emerging concepts, such as polarity switching during electrode fabrication, fine polarity tuning by accurate grafting, and infiltration of the electrode voids by a solution of the SE. The process of using a dry film with a fibrous binder has also raised interest, motivated by lowering the manufacturing cost, maintaining the environment, and boosting the volumetric energy density. Finally, optimization of the cell assembly and operation is reviewed. In particular, the application of external pressure to each unit cell has been universally adopted both in the fabrication step and during cell operation to realize high cell performance. The effect of pressurization is discussed by correlatin...
Sulfide‐based all‐solid‐state batteries (ASSBs) have been featured as promising alternatives to the current lithium‐ion batteries (LIBs) mainly owing to their superior safety. Nevertheless, a solution‐based scalable manufacturing scheme has not yet been established because of the incompatible polarity of the binder, solvent, and sulfide electrolyte during slurry preparation. This dilemma is overcome by subjecting the acrylate (co)polymeric binders to protection−deprotection chemistry. Protection by the tert‐butyl group allows for homogeneous dispersion of the binder in the slurry based on a relatively less polar solvent, with subsequent heat‐treatment during the drying process to cleave the tert‐butyl group. This exposes the polar carboxylic acid groups, which are then able to engage in hydrogen bonding with the active cathode material, high‐nickel layered oxide. Deprotection strengthens the electrode adhesion such that the strength equals that of commercial LIB electrodes, and the key electrochemical performance parameters are improved markedly in both half‐cell and full‐cell settings. The present study highlights the potential of sulfide‐based ASSBs for scalable manufacturing and also provides insights that protection−deprotection chemistry can generally be used for various battery cells that suffer from polarity incompatibility among multiple electrode components.
All‐solid‐state batteries (ASSBs) that employ anode‐less electrodes have drawn attention from across the battery community because they offer competitive energy densities and a markedly improved cycle life. Nevertheless, the composite matrices of anode‐less electrodes impose a substantial barrier for lithium‐ion diffusion and inhibit operation at room temperature. To overcome this drawback, here, the conversion reaction of metal fluorides is exploited because metallic nanodomains formed during this reaction induce an alloying reaction with lithium ions for uniform and sustainable lithium (de)plating. Lithium fluoride (LiF), another product of the conversion reaction, prevents the agglomeration of the metallic nanodomains and also protects the electrode from fatal lithium dendrite growth. A systematic analysis identifies silver (I) fluoride (AgF) as the most suitable metal fluoride because the silver nanodomains can accommodate the solid‐solution mechanism with a low nucleation overpotential. AgF‐based full cells attain reliable cycling at 25 °C even with an exceptionally high areal capacity of 9.7 mAh cm−2 (areal loading of LiNi0.8Co0.1Mn0.1O2 = 50 mg cm–2). These results offer useful insights into designing materials for anode‐less electrodes for sulfide‐based ASSBs.
Sulfide-based all-solid-state batteries (ASSBs) offer enhanced safety and potentially high energy density. Particularly, an “anode-less” electrode containing metallic seeds that form a solid-solution with lithium was recently introduced to improve the cycle life of sulfide-based ASSB cells. However, this anode-less electrode is gradually destabilized because the metal particles undergo severe volume expansion during repeated cycling. Furthermore, the irreversibility of the electrode in early cycles impairs the energy density of the cell significantly. Herein, we introduce an elastic polymer known as “Spandex” as a binder for the silver–carbon composite. The soft and hard segments of this binder act synergistically in that the former engages in strong hydrogen bonding with the active material and the latter promotes elastic adjustment of the binder network. This binder design significantly improves the charge–discharge reversibility and long-term cyclability of the anode-less ASSB cell and provides insights into elastic binder systems for high-capacity ASSB anodes that undergo a large volume expansion.
The high specific capacity in excess of 200 mAh g–1 and low dependence on cobalt have enhanced the research interest on nickel-rich layered metal oxides as cathode materials for lithium-ion batteries for electric vehicles. Nonetheless, their poor cycle life and thermal stability, resulting from the occurrence of cation mixing between the transition-metal (TM) and lithium ions, are yet to be fully addressed to enable the widespread and reliable use of these materials. Here, we report a two-dimensional (2D) pyrazine-linked covalent organic framework (namely, Pyr-2D) as a coating material for nickel-rich layered cathodes to mitigate unwanted TM dissolution and interfacial reactions. The Pyr-2D coating layer, especially the 2D planar morphology and conjugated atomic configuration of Pyr-2D, protects the electrode surface effectively during cycling without sacrificing the electric conductivity of the host material. As a result, Pyr-2D-coated nickel-rich layered cathodes exhibited superior cyclability, rate performance, and thermal stability. The present study highlights the potential ability of 2D conjugated covalent organic frameworks to improve the key electrochemical properties of emerging battery electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.