Wearable electronic textiles are used in sensors, energyharvesting devices, healthcare monitoring, human−machine interfaces, and soft robotics to acquire real-time big data for machine learning and artificial intelligence. Wearability is essential while collecting data from a human, who should be able to wear the device with sufficient comfort. In this study, reduced graphene oxide (rGO) and silver nanowires (AgNWs) were supersonically sprayed onto a fabric to ensure good adhesiveness, resulting in a washable, stretchable, and wearable fabric without affecting the performance of the designed features. This rGO/AgNW-decorated fabric can be used to monitor external stimuli such as strain and temperature. In addition, it is used as a heater and as a supercapacitor and features an antibacterial hydrophobic surface that minimizes potential infection from external airborne viruses or virus-containing droplets. Herein, the wearability, stretchability, washability, mechanical durability, temperature-sensing capability, heating ability, wettability, and antibacterial features of this metallized fabric are explored. This multifunctionality is achieved in a single fabric coated with rGO/AgNWs via supersonic spraying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.