Considering the potential bioactivities of natural product and natural product-like compounds with highly complex and diverse structures, the screening of collections and small-molecule libraries for high-throughput screening (HTS) and high-content screening (HCS) has emerged as a powerful tool in the development of novel therapeutic agents. Herein, we review the recent advances in divergent synthetic approaches such as complexity-to-diversity (Ctd) and biomimetic strategies for the generation of structurally complex and diverse indole-based natural product and natural product-like small-molecule libraries.
A new fluorescent indolizine-based scaffold was developed using a straightforward synthetic scheme starting from a pyrrole ring. In this fluorescent system, an N,N-dimethylamino group in the aryl ring at the C-3 position of indolizine acted as an electron donor and played a crucial role in inducing a red shift in the emission wavelength based on the ICT process. Moreover, various electron-withdrawing groups, such as acetyl and aldehyde, were introduced at the C-7 position of indolizine, to tune and promote the red shift of the emission wavelength, resulting in a color range from blue to orange (462–580 nm). Furthermore, the ICT effect in indolizine fluorophores allowed the design and development of new fluorescent pH sensors of great potential in the field of fluorescence bioimaging and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.