The utilization of urban green areas has increased, but it is unclear whether urban green areas can decrease the concentration of particulate matter at an industrial complex city in Korea. We measured the extent of particulate matter (PM) reduction at a buffer green area in the Sihwa Industrial Complex. PM was measured at the industrial complex, the urban green area, and a nearby residential area from April to October 2019. PM reduction rates were highest at the urban green area in August and October, which is related to increased atmospheric mixing height and the active west wind blowing from the industrial complex to the residential area. Reduction rates of PM10 and PM2.5 at the urban green area showed the lowest values, namely 14.4% and 25.3%, respectively. The air temperature, wind speed, and humidity could affect the PM reduction rate by influencing the movement and dispersion of PM at the micro-spatiotemporal scale. These results indicated that PM concentration could be reduced by the structural change of a forest layer at a micro scale in urban green areas.
Green buffer (GB) zones are designed to prevent the spread of air pollutants and odors from industrial complexes (ICs) to residential areas (RAs). We analyzed changes in the concentration of particulate matter (PM) and the number of high PM pollution days for 10 years after the GB was implemented, using the National Atmospheric Environmental Research Stations 2001–2018 dataset. We also performed field measurements of PM10 and PM2.5 from February 2018 to January 2019 to analyze the PM concentrations at human breathing height throughout the GB. Before GB implementation (2001–2006), PM10 in the RA was 9% higher than that in the IC. After GB zone implementation (2013–2018), PM10 in the RA was 11% lower than that of the IC. Furthermore, the PM concentration in the RA (slope = ∆Concentration/∆Time, −2.09) rapidly decreased compared to that in the IC (slope = −1.02) and the western coastal area (WCA) (slope = −1.55) over the 10-year period. At PM concentrations at human breathing height, PM10 and PM2.5 in the RA were lower than those in the IC by 27% and 26%, respectively. After GB implementation, the wind speed was positively correlated but SOx was negatively correlated with the PM reduction rate at a local scale. These results show that there was a reduction of PM during and after GB implementation, implying the need for proper management of GBs and continuous measure of pollutant sources at the green buffers of industrial complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.