Solution-processable electrochromic (EC) materials have been investigated widely for various applications, such as smart windows, reflective displays, and sensors. Among them, tungsten trioxide (WO3) is an attractive material because it can form a film via a solution process and relative low temperature treatment, which is suitable for a range of substrates. This paper introduces the slot-die and electrostatic force-assisted dispensing (EFAD) printing for solution-processable methods of WO3 film fabrication. The resulting films were compared with WO3 films prepared by spin coating. Both films exhibited a similar morphology and crystalline structure. Furthermore, three different processed WO3 film-based electrochromic devices (ECDs) were prepared and exhibited similar device behaviors. In addition, large area (100 cm2) and patterned ECDs were fabricated using slot-die and EFAD printing. Consequently, slot-die and EFAD printing can be used to commercialize WO3 based-ECDs applications, such as smart windows and reflective displays.
Porous carbon nanofibers (CNFs) with high energy storage performance were fabricated with a single precursor polymer, 6FDA-TFMB, without the use of any pore-generating materials. 6FDA-TFMB was synthesized, electrospun, and thermally treated to produce binder-free CNF electrodes for electrochemical double-layer capacitors (EDLCs). Highly porous CNFs with a surface area of 2213 m2 g−1 were prepared by steam-activation. CNFs derived from 6FDA-TFMB showed rectangular cyclic voltammograms with a specific capacitance of 292.3 F g−1 at 10 mV s−1. It was also seen that CNFs exhibit a maximum energy density of 13.1 Wh kg−1 at 0.5 A g−1 and power density of 1.7 kW kg−1 at 5 A g−1, which is significantly higher than those from the common precursor polymer, polyacrylonitrile (PAN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.