Recently, several plant pathogens have become more active due to temperature increases arising from climate change, which has caused damage to various crops. If climate change continues, it will likely be very difficult to maintain current crop production, and the problem of a shortage of expert manpower is also deepening. Fortunately, research on various early diagnosis systems based on deep learning is actively underway to solve these problems, but the problem of lack of diversity in some hard-to-collect disease samples remains. This imbalanced data increases the bias of machine learning models, causing overfitting problems. In this paper, we propose a data augmentation method based on an image-to-image translation model to solve the bias problem by supplementing these insufficient diseased leaf images. The proposed augmentation method performs translation between healthy and diseased leaf images and utilizes attention mechanisms to create images that reflect more evident disease textures. Through these improvements, we generated a more plausible diseased leaf image compared to existing methods and conducted an experiment to verify whether this data augmentation method could further improve the performance of a classification model for early diagnosis of plants. In the experiment, the PlantVillage dataset was used, and the extended dataset was built using the generated images and original images, and the performance of the classification models was evaluated through the test set.
The efficiency of photosynthesis in strawberry plants is measured to maintain the quality and quantity of strawberries produced. The latest method used to measure the photosynthetic status of plants is chlorophyll fluorescence imaging (CFI), which has the advantage of obtaining plant spatiotemporal data non-destructively. This study developed a CFI system to measure the maximum quantum efficiency of photochemistry (Fv/Fm). The main components of this system include a chamber for plants to adapt to dark environments, blue LED light sources to excite the chlorophyll in plants, and a monochrome camera with a lens filter attached to capture the emission spectra. In this study, 120 pots of strawberry plants were cultivated for 15 days and divided into four treatment groups: control, drought stress, heat stress, and a combination of drought and heat stress, resulting in Fv/Fm values of 0.802 ± 0.0036, 0.780 ± 0.0026, 0.768 ± 0.0023, and 0.749 ± 0.0099, respectively. A strong correlation was found between the developed system and a chlorophyll meter (r = 0.75). These results prove that the developed CFI system can accurately capture the spatial and temporal dynamics resulting from the response of strawberry plants to abiotic stresses.
Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to detect the early heat and water stress in strawberry plants. The hyperspectral images were used to capture the fluorescence reflectance in the range of 500 nm–900 nm. From the hyperspectral cube, the region of interest (leaves) was identified, followed by the extraction of eight chlorophyll-fluorescence indices from the region of interest (leaves). These eight chlorophyll-fluorescence indices were analyzed deeply to identify the best indicators for our objective. The indices were used to develop machine-learning models to assess the performance of the indicators by accuracy assessment. The overall procedure is proposed as a new workflow for determining strawberry plants’ early heat and water stress. The proposed workflow suggests that by including all eight indices, the random-forest classifier performs well, with an accuracy of 94%. With this combination of the potential indices, namely the red-edge vegetation stress index (RVSI), chlorophyll B (Chl-b), pigment-specific simple ratio for chlorophyll B (PSSRb), and the red-edge chlorophyll index (CIREDEDGE), the gradient-boosting classifier performs well, with an accuracy of 91%. The proposed workflow works well with a limited number of training samples which is an added advantage.
Ginseng is a perennial herbaceous plant that has been widely consumed for medicinal and dietary purposes since ancient times. Ginseng plants require shade and cool temperatures for better growth; climate warming and rising heat waves have a negative impact on the plants’ productivity and yield quality. Since South Korea’s temperature is increasing beyond normal expectations and is seriously threatening ginseng plants, an early-stage non-destructive diagnosis of stressed ginseng plants is essential before symptomatic manifestation to produce high-quality ginseng roots. This study demonstrated the potential of fluorescence hyperspectral imaging to achieve the early high-throughput detection and prediction of chlorophyll composition in four varieties of heat-stressed ginseng plants: Chunpoong, Jakyeong, Sunil, and Sunmyoung. Hyperspectral imaging data of 80 plants from these four varieties (temperature-sensitive and temperature-resistant) were acquired before and after exposing the plants to heat stress. Additionally, a SPAD-502 meter was used for the non-destructive measurement of the greenness level. In accordance, the mean spectral data of each leaf were extracted from the region of interest (ROI). Analysis of variance (ANOVA) was applied for the discrimination of heat-stressed plants, which was performed with 96% accuracy. Accordingly, the extracted spectral data were used to develop a partial least squares regression (PLSR) model combined with multiple preprocessing techniques for predicting greenness composition in ginseng plants that significantly correlates with chlorophyll concentration. The results obtained from PLSR analysis demonstrated higher determination coefficients of R2val = 0.90, and a root mean square error (RMSE) of 3.59%. Furthermore, five proposed bands (683 nm, 688 nm, 703 nm, 731 nm, and 745 nm) by stepwise regression (SR) were developed into a PLSR model, and the model coefficients were used to create a greenness-level concentration in images that showed differences between the control and heat-stressed plants for all varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.