Deep neural networks (DNNs) are increasingly being adopted for sensing and control functions in a variety of safety and mission-critical systems such as self-driving cars, autonomous air vehicles, medical diagnostics and industrial robotics. Failures of such systems can lead to loss of life or property, which necessitates stringent verification and validation for providing high assurance. Though formal verification approaches are being investigated, testing remains the primary technique for assessing the dependability of such systems. Due to the nature of the tasks handled by DNNs, the cost of obtaining test oracle data-the expected output, a.k.a. label, for a given input-is high, which significantly impacts the amount and quality of testing that can be performed. Thus, prioritizing input data for testing DNNs in meaningful ways to reduce the cost of labeling can go a long way in increasing testing efficacy. This paper proposes using gauges of the DNN's sentiment derived from the computation performed by the model, as a means to identify inputs that are likely to reveal weaknesses. We empirically assessed the efficacy of three such sentiment measures for prioritization-confidence, uncertainty and surprise-and compare their effectiveness in terms of their fault-revealing capability and retraining effectiveness. The results indicate that sentiment measures can effectively flag inputs that expose unacceptable DNN behavior. For MNIST models, the average percentage of inputs correctly flagged ranged from 88% to 94.8%.
The increasing use of machine-learning (ML) enabled systems in critical tasks fuels the quest for novel verification and validation techniques yet grounded in accepted system assurance principles. In traditional system development, model-based techniques have been widely adopted, where the central premise is that abstract models of the required system provide a sound basis for judging its implementation. We posit an analogous approach for ML systems using an ML technique that extracts from the high-dimensional training data implicitly describing the required system, a low-dimensional underlying structure-a manifold. It is then harnessed for a range of quality assurance tasks such as test adequacy measurement, test input generation, and runtime monitoring of the target ML system. The approach is built on variational autoencoder, an unsupervised method for learning a pair of mutually near-inverse functions between a given high-dimensional dataset and a low-dimensional representation. Preliminary experiments establish that the proposed manifold-based approach, for test adequacy drives diversity in test data, for test generation yields fault-revealing yet realistic test cases, and for run-time monitoring provides an independent means to assess trustability of the target system's output. CCS CONCEPTS• Software and its engineering → Software testing and debugging; • Computing methodologies → Machine learning.
The automotive operating system is a typical safety-critical system that is tightly coupled with the operational environment through system services. However, existing automated techniques come short of testing the interface of such operating systems. We introduced an automated test generation method for system-level safety testing of the automotive operating systems, by utilizing the operational constraints defined in the specification. This work extends the idea by adding configuration-dependent and state-dependent constraint patterns, and by developing a tool chain to automate the constraint-based system-level testing. The effectiveness of our approach is demonstrated through a series of experiments, and a comparative analysis is performed between our method and concolic testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.