In the growing field of brain-machine interface (BMI), the interface between electrodes and neural tissues plays an important role in the recording and stimulation of neural signals. To minimize tissue damage while retaining high sensitivity, a flexible and a smaller electrode with low impedance is required. However, it is a major challenge to reduce electrode size while retaining the conductive characteristics of the electrode. In addition, the mechanical mismatch between stiff electrodes and soft tissues creates damaging reactive tissue responses. Here, we demonstrate a neural probe structure based on graphene, ZnO nanowires, and conducting polymer that provides flexibility and low impedance performance. A hybrid Au and graphene structure was utilized to achieve both flexibility and good conductivity. Using ZnO nanowires to increase the effective surface area drastically decreased the impedance value and enhanced the signal-to-noise ratio (SNR). A poly[3,4-ethylenedioxythiophene] (PEDOT) coating on the neural probe improved the electrical characteristics of the electrode while providing better biocompatibility. In vivo neural signal recordings showed that our neural probe can detect clearer signals.
Intraoral radiographs have been taken to diagnose periapical lesions. Subsequent endodontic treatment needs to be evaluated quantitatively, that is often difficult due to various imaging factors as well as subjective visual interpretation. Therefore, we sought to establish an image analysis based quantitative model to evaluate endodontic treatments (40 effective and 43 noneffective cases). To normalize an image, the dentin area and the background were used as references. In each pair of images representing before and after treatment, the lesion area was manually selected by experts and segmented by tophat operation. Numerous features representing the effective bone healing were calculated. Using relative differences of selected features, an evaluation model was derived by logistic regression analysis. Gray level intensity and textural differences obtained from lesions significantly increased in the effectively treated cases. The model provided the accuracy of 80.7%. Our quantitative model may be helpful to evaluate endodontic treatment in clinical settings and in animal studies.
Objectives
To develop a prediction model of spontaneous ureteral stone passage (SSP) using machine learning and logistic regression and compare the performance of the two models. Indications for management of ureteral stones are unclear, and the clinician determines whether to wait for SSP or perform active treatment, especially in well-controlled patients, to avoid unwanted complications. Therefore, suggesting the possibility of SSP would help make a clinical decision regarding ureteral stones.
Methods
Patients diagnosed with unilateral ureteral stones at our emergency department between August 2014 and September 2018 were included and underwent non-contrast-enhanced computed tomography 4 weeks from the first stone episode. Predictors of SSP were applied to build and validate the prediction model using multilayer perceptron (MLP) with the Keras framework.
Results
Of 833 patients, SSP was observed in 606 (72.7%). SSP rates were 68.2% and 75.6% for stone sizes 5–10 mm and <5 mm, respectively. Stone opacity, location, and whether it was the first ureteral stone episode were significant predictors of SSP. Areas under the curve (AUCs) for receiver operating characteristic (ROC) curves for MLP, and logistic regression were 0.859 and 0.847, respectively, for stones <5 mm, and 0.881 and 0.817, respectively, for 5–10 mm stones.
Conclusion
SSP prediction models were developed in patients with well-controlled unilateral ureteral stones; the performance of the models was good, especially in identifying SSP for 5–10-mm ureteral stones without definite treatment guidelines. To further improve the performance of these models, future studies should focus on using machine learning techniques in image analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.