Recently, a lattice reduction-aided (LRA) multiple-input multiple-output detection scheme has been proposed in junction with linear (as well as nonlinear) detectors. It is well known that these schemes provide a full diversity, and its complexity is comparable to that of linear detectors for the block fading channels. For the fast varying channels, however, the decoding complexity of LRA detection scheme is unreasonably high. This article proposes an efficient iterative lattice reduction (LR) scheme for an uplink system with two receive antennas at the base station and two users, each employing the Alamouti space-time block code (STBC). By taking advantage of the certain inherent STBC structure of transmitted symbols from users, the proposed scheme provides the same performance as a conventional LR while saving about 80% computational complexity. We also show that it can be successfully extended to handle the scenario where another interfering user, who is also employing the Alamouti STBC, is present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.