Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5.
Field observations of spawning behavior of scleractinian corals around Akajima Island were carried out from late spring to summer in 1989, 1990 and 1991. Investigations focused on the degree of spawning synchrony among Acropora spp. and its relation to fluctuations in environmental factors. Eighty-five species, representing 27 genera and 10 families of scleractinian corals, were observed to spawn from May to early September during the 3 years. Spawning of most Acropora spp. took place synchronously but timing varied between the 3rd night before to the 7th night after full moon in May and/or June. Non-Acropora species spawned mainly from the 2nd to the 8th night after full moon from June to August. The relationship between date of spawning and lunar phase was not clear, but other environmental stimul~ such as marked changes of temperature, salinity and current velocity might trigger mass synchronous spawning among the Acropora.
Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimer's disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the “phospho-tau bar code.” In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.
Glycogen synthase kinase 3β (GSK3β) is a multifunctional protein kinase involved in many cellular activities including development, differentiation and diseases. GSK3β is thought to be constitutively activated by autophosphorylation at Tyr216 and inactivated by phosphorylation at Ser9. The GSK3β activity has previously been evaluated by inhibitory Ser9 phosphorylation, but it does not necessarily indicate the kinase activity itself. Here, we applied the Phos-tag SDS-PAGE technique to the analysis of GSK3β phosphoisotypes in cells and brains. There were three phosphoisotypes of GSK3β; double phosphorylation at Ser9 and Tyr216, single phosphorylation at Tyr216 and the nonphosphorylated isotype. Active GSK3β with phosphorylation at Tyr216 represented half or more of the total GSK3β in cultured cells. Although levels of phospho-Ser9 were increased by insulin treatment, Ser9 phosphorylation occurred only in a minor fraction of GSK3β. In mouse brains, GSK3β was principally in the active form with little Ser9 phosphorylation, and the phosphoisotypes of GSK3β changed depending on the regions of the brain, age, sex and disease conditions. These results indicate that the Phos-tag SDS-PAGE method provides a simple and appropriate measurement of active GSK3β in vivo, and the activity is regulated by the mechanism other than phosphorylation on Ser9.
Background: Hyperphosphorylated Tau is a component of neurofibrillary tangles, the pathological hallmark in brains with tauopathies. Results: Pin1 binds phospho-Tau and stimulates its dephosphorylation at Cdk5-mediated phosphorylation sites. Conclusion: Efficient Tau dephosphorylation at Alzheimer-related sites requires Pin1 activity, thereby preventing Tau hyperphosphorylation. Significance: Disruption of Pin1-dependent facilitation of Tau dephosphorylation may be a critical mechanism underlying the etiology of tauopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.