Endocrine therapy is the standard treatment for advanced prostate cancer; however, relapse occurs in most patients with few treatment options available after recurrence. To overcome this therapeutic hurdle, the identification of new molecular targets is a critical issue. The capability to proliferate in three-dimensional (3D) conditions is a characteristic property of cancer cells. Therefore, factors that regulate 3D growth are considered rational targets for cancer therapy. Here, we applied a functional genomic approach to the 3D spheroid cell culture model and identified TRIB1, a member of the Trib family of serine/threonine kinase-like proteins, as an essential factor for prostate cancer cell growth and survival. RNAi-mediated silencing of TRIB1 suppressed prostate cancer cell growth selectively under the 3D conditions. This effect was rescued by ectopic expression of an RNAi-resistant TRIB1 exogene. Gene signature-based analysis revealed that TRIB1 was related to endoplasmic reticulum (ER) pathways in prostate cancer and was required for expression of the ER chaperone GRP78, which is critical for prostate tumorigenesis. Of note, GRP78 was expressed preferentially in a subpopulation of prostate cancer cells that possess tumor-propagating potential, and these tumor-propagating cells were highly sensitive to TRIB1 and GRP78 depletion. In a xenograft model of human prostate cancer, TRIB1 depletion strongly inhibited tumor formation. Supporting these observations, we documented frequent overexpression of TRIB1 in clinical specimens of prostate cancer. Overall, our results indicated that the TRIB1-ER chaperone axis drives prostate tumorigenesis and the survival of the tumor-propagating cells. Cancer Res; 74(17); 4888-97. Ó2014 AACR.
The lysosomal adaptor protein p18 is an essential anchor of a scaffolding complex for the mTORC1 and MAPK pathways, which play crucial roles in controlling cell growth and energy homeostasis. To elucidate the in vivo function of the p18-mediated pathway, we conditionally ablated p18 in the mouse epidermis. Mutant mice were born with severe defects in formation of the stratum corneum and died within 12 h after birth due to dehydration caused by loss of skin barrier function. Mutant epidermal cells can grow and differentiate into granular cells, but exhibit functional defects in corneocyte maturation. Electron microscopy identified abnormal immature cells, overlying the mutant granular cells, which accumulated autophagosomes, glycogen granules and dead nuclei. Cell culture analysis showed that loss of p18 attenuated lysosome function, resulting in accumulation of immature lysosomes and autophagosomes. Analyses of lysosome behavior revealed that p18 is required for functional interaction between lysosomes and target organelles including autophagosomes. These findings suggest that p18-mediated pathways control lysosome-mediated catabolic processes, which are crucial for the development of mouse epidermis.
Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.