Background. Circulating apolipoprotein-AII (apoAII-) ATQ/AT is a potential useful biomarker for early stage pancreatic ductal adenocarcinoma (PDAC), but its clinical significance in PDAC patients remains uncertain. The aim of the current study was to assess the usefulness of apoAII-ATQ/AT as a surrogate for the effect of chemoradiotherapy (CRT) and its association with pancreatic exocrine disorder, paying attention to morphological changes of the pancreas. Methods. In the 264 PDAC patients who were enrolled in our CRT protocol, the following parameters were measured at specified time points before and after CRT: serum levels of albumin, total cholesterol, and amylase as indices of pancreatic exocrine function, serum levels of CA19-9, and the pancreatic morphology including tumor size (TS), main pancreatic duct diameter (MPDD), and pancreatic parenchymal volume excluding tumor volume (PPV) by using computed tomography (CT) images. Plasma apoAII-ATQ/AT levels were simultaneously measured with enzyme-linked immunosorbent assay in 4 healthy volunteers and the 44 PDAC patients before and after CRT. Plasma apoAII-ATQ/AT levels after CRT were analyzed according to small/large-MPDD and small/large-PPV groups based on their median values after CRT. Plasma samples after CRT were measured after incubation with human pancreatic juice (PJ) to examine the relevance between apoAII isoforms and circulating pancreatic enzymes. Results. The serum levels of albumin, amylase, CA19-9, TS, MPDD, and PPV after CRT were significantly lower than those before CRT (median, before vs. after: 3.9 g/dl, 74 U/l, 180.2 U/ml, 58.1 mm, 4.0 mm, and 34.8 ml vs. 3.8, 59, 43.5, 55.6, 3.6, and 25.2). ApoAII-ATQ/AT levels (median, μg/ml) of PDAC patients before CRT were significantly lower than those in healthy volunteers: 32.9 vs. 61.2, and unexpectedly those after CRT significantly decreased: 14.7. The reduction rate of apoAII-ATQ/AT was not correlated with those of CA19-9 and TS, indicating that apoAII-ATQ/AT is not a tumor-specific marker. On the other hand, the patient group with large MPDD and small PV exhibited higher apoAII-ATQ levels than those with small MPDD and large PPV. The incubation of plasma samples after CRT with PJ did not alter apoAII-ATQ/AT and apoAII-AT levels but significantly decreased apoAII-ATQ levels, suggesting that circulating pancreatic enzymes markedly influenced apoAII-ATQ levels. Conclusions. ApoAII-ATQ/AT levels are not useful for evaluation of clinical effect of CRT for PDAC, but apoAII isoforms are very useful to assess pancreatic exocrine disorder because pancreatic atrophy and insufficient secretion of circulating pancreatic enzymes are considered likely to influence apoAII-ATQ levels.
Thrombin is a key player in the coagulation cascade, and it is attracting much attention as a promotor of cellular injured signaling. In ischemia/reperfusion injury (IRI), which is a severe complication of liver transplantation, thrombin may also promote tissue damage. The aim of this study is to reveal whether dabigatran, a direct thrombin inhibitor, can attenuate hepatic IRI with focusing on a protection of sinusoidal endothelial cells (SECs). Both clinical patients who underwent hepatectomy and in vivo mice model of 60‐minute hepatic partial‐warm IRII, thrombin generation was evaluated before and after IRI. In next study, IRI mice were treated with or without dabigatran. In addition, hepatic SECs and hepatocytes pretreated with or without dabigatran were incubated in hypoxia/reoxygenation (H‐R) environment in vitro. Thrombin generation evaluated by thrombin–antithrombin complex (TAT) was significantly enhanced after IRI in the clinical study and in vivo study. Thrombin exacerbated lactate dehydrogenase cytotoxicity levels in a dose‐dependent manner in vitro. In an IRI model of mice, dabigatran treatment significantly improved liver histological damage, induced sinusoidal protection, and provided both antiapoptotic and anti‐inflammatory effects. Furthermore, dabigatran not only enhanced endogenous thrombomodulin (TM) but also reduced excessive serum high‐mobility group box‐1 (HMGB‐1). In H‐R models of SECs, not hepatocytes, pretreatment with dabigatran markedly attenuated H‐R damage, enhanced TM expression in cell lysate, and decreased extracellular HMGB‐1. The supernatant of SECs pretreated with dabigatran protected hepatocytes from H‐R damage and cellular death. Thrombin exacerbated hepatic IRI, and excessive extracellular HMGB‐1 caused severe inflammation‐induced and apoptosis‐induced liver damage. In this situation, dabigatran treatment improved vascular integrity via sinusoidal protection and degraded HMGB‐1 by endogenous TM enhancement on SECs, greatly ameliorating hepatic IRI.
Intratumor stromal expression of TN-C is a strong prognostic indicator in UR-LA PDAC patients with resection after CRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.