The objective of this study was to develop the metronidazole loaded high and low methoxyl pectin films (HM-G-MZ and LM-G-MZ) for the treatment of periodontal disease. The films were prepared by pectin 3% w/v, glycerin 40% w/v, and metronidazole 5% w/v. The developed films were characterized by scanning electron microscope and evaluated for thickness, weight variation, and elasticity. The developed films showing optimal mechanical properties were selected to evaluate radial swelling properties, in vitro release of metronidazole and the antimicrobial activity against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by the disc diffusion method. The results demonstrated that LM-MZ and HM-G-MZ films were colorless and yellowish color, respectively, with the film thickness around 0.36–0.38 mm. Furthermore, both films exhibited good elasticity with low puncture strength (1.63 ± 0.37 and 0.84 ± 0.03 N/mm2, respectively) and also showed slight increase in radial swelling, so that they could be easily inserted and fitted into the periodontal pocket during a clinical use. However, HM-G-MZ showed a decrease in radial swelling after 1 h due to the film erosion. The in vitro release study of LM-G-MZ showed a burst release that was initially followed by a slow release rate profile, capable to maintain the therapeutic level in periodontal pocket for seven days, whereas HM-G-MZ showed an immediate release profile. The cumulative percentage of metronidazole release from HM-G-MZ was less than LM-G-MZ during the first 5 min as metronidazole was in a crystalline form inside HM-G-MZ film. For antimicrobial activity test, both films showed the inhibitory effect against P. gingivalis and A. actinomycetemcomitans, and there was no difference in the inhibition zone between LM-G-MZ and HM-G-MZ. The present study showed, for the first time, that low methoxyl pectin film containing glycerin and metronidazole could be potentially considered as a promising clinical tool for the drug delivery via intra-periodontal pocket to target an oral disease that is associated with polymicrobial infection.
In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water–ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.
Harvesting makhwaen (Zanthoxylum myriacanthum Wall. ex Hook. f) fruits at the appropriate maturity is the key to ensure that the essential oil quality meets the need of consumers. In common practice, the fruits are usually harvested when their pericarps start to open and fruits are greenish-red in colour depending on the judgment of the farmers. This leads to inconsistencies in the essential oil quality. This research aims at characterising the aromatic profiles of makhwaen essential oil thereby for consumers to choose the quality that best fits their need and eventually identify the optimum harvesting index of the fruits. The effects of maturity states viz. 15, 36, 45 and 60 (MK15-60) days after fruiting on chemical and sensorial quality of the essential oil was evaluated. Fruit sizes ranged from ~3.3–3.7 mm and fruits appeared to dry initially when they reached 45 days. Essential oils were extracted from these fruits after they had been oven dried (60 °C) to the same moisture content, about 10%. The chemical profiles of the essential oil were different. L-limonene and sabinene were evaluated as key components for good quality essential oil and they were found to be higher in MK45 and MK60 (max = 139.04 µg·mL−1 and max = 146.27 respectively). NIR spectral patterns of pure extracted oil for every different harvesting time (of every different harvesting time of MK60 and MK36) were similar. Sensorial descriptive analysis by semi-trained panellists defined six terms for characteristics (woody, citrus, herb, sweet, pine and spice). The panels provided the highest rating score (15 numeric scale) of citrus and pine scents at MK45, while sweet and woody aromas were the highest at MK15. The spice scent was maximum when the fruits were harvested at 36 days after fruiting. From this study we suggest that the optimum harvesting index for the distinctive aroma of essential oil ought to be at late harvesting (45–60 days after fruiting). The findings contribute to our understanding of the harvesting maturity, which can also provide significant benefit for the perfumery industry, i.e., the optimum harvesting stage that imparts the essential oil with highest quality.
The effects of variety and modification of rice on its antioxidant and anti-inflammatory activities were investigated. White rice varieties; Jasmine (JM) and Saohai (SH), and pigmented rice varieties; Doisket (DS) and Homnil (HN) were used. The modified rice samples were obtained from chemical modification using etherification reaction. The activities of the modified rice samples were compared with the ethanol extracts of the raw rice at the same rice concentration. Antioxidant activity was measured by the free radical scavenging activity tests and ferric reducing power assay. Results indicated that the ethanol extracts of raw rice had higher antioxidant activity than the modified rice. Among the raw rice tested, the pigmented rice showed higher antioxidant activity than white rice. Trolox equivalent antioxidant capacity values from free radical scavenging activity test were revealed that 50% ethanol extracts of HN and DS possessed the highest antioxidant activity. Ferric reducing power assay showed that 50% ethanol extracts of DS had the highest antioxidant activity. The anti-inflammatory activity was evaluated in vitro using a lipopolysaccharide-stimulated RAW264.7 macrophage cell model with enzyme-linked immunosorbent assay. Absolute ethanol extracts of HN reduced interleukin-6 secretion whereas that of DS suppressed interleukin-6 and tumor necrosis factor -α secretion. These results indicate that variety of rice, chemical modification, and extracting solvent were the factors that play an important role on antioxidant and anti-inflammatory activity. This study supports the potential use of the pigmented rice, especially DS, as a promising choice of a natural source because of its antioxidant and anti-inflammatory activities.
In this research, a novel source of phytopigment crocins from fully open mature flowers of cape jasmine ( Gardenia jasminoides ) is introduced. Methanol and deionized water were appropriate solvents for pigment recovery with maximum yields of at least 17% from the floral tissue. Pigment separation by thin layer chromatography also confirmed the presence of the carotenoids, which dissolved well in these high-strength polar solvents, in fruit, flower, and leaf materials. The spectral patterns of the extracts from ultraviolet and nuclear magnetic resonance showed maximum absorption at ~420 nm and the chemical shift values were similar to those of crocetin aglycones (crocins) in the methanol extracts of a commercial source of yellow gardenia (fructus or fruit of Gardenia florida ). Chemical compositions were then evaluated using aqueous-phase capillary electrophoresis of the methanol extracts. The methanolic extracts of the flowers and fruit had 11 principal ingredients in common. Among these, crocetin and crocin 2 belong to the crocin group and are known to be the major components of commercial yellow Gardenia . This research not only demonstrates a sustainable means of raw material utilization for natural product recovery, but also encourages a movement toward an edible landscape for the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.