Metabolic analysis of CR6 interacting factor 1 (Crif1) deficient mouse embryonic fibroblasts with impaired oxidative phosphorylation has been carried out using LC-MS/MS and GC-MS methods. Metabolic profiles of the Crif1 deficient cells were comprehensively obtained for the first time. Loss of oxidative phosphorylation functions in mitochondria resulted in cancer-like metabolic reprogramming with consumption of majority of glucose carbon from up-regulated glycolysis to produce lactate, suppressed utilization of glucose carbon in the TCA cycle, increased amounts of amino acids. The changes in metabolic profile of the Crif1 deficient cells are most probably a consequence of metabolic reprogramming to meet the needs of energy balance and anabolic precursors in compensation for the loss of major oxidative phosphorylation functions.
The goal of this study is to find an experimental condition which enables us to perform enzymatic studies on the cellular behavior of PTEN (phosphatase and tensine homolog) through identification of molecular species of phosphatidylinositol 3,4,5-trisphosphates and their quantitative analysis in a mammalian cell line using mass spectrometry. We initially exployed a two-step extraction process using HCl for extraction of phosphatidylinositol 3,4,5-trisphosphates from two mammalian cell lines and further analyzed the extracted phosphatidylinositol 3,4,5-trisphosphates using tandem mass spectrometry for the identification of them. We finally quantified the concentration of phosphatidylinositol 3,4,5-trisphosphates using internal standard calibration. From these observation, we found that HEK 293-T cells is a good model to examine the enzymatic behavior of PTEN in a cell, and the minimum amount of phosphatidylinositol 3,4,5-trisphosphates is more than 50 pmol for quantification in a mass spectrometer. These results suggest that the well-optimized experimental conditions are required for the investigation of the cellular PTEN in terms of the catalytic mechanism and further for the detailed identification of cellular substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.