Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathodes have been highlighted for large-scale energy applications due to their high energy density. Although its specific capacity is enhanced at higher voltages as Ni ratio increases, its structural degradation due to phase transformations and lattice distortions during cycling becomes severe. For these reasons, we focused on the origins of crack generation from phase transformations and structural distortions in Ni-rich LiNi0.8Co0.1Mn0.1O2 using multiscale approaches, from first-principles to meso-scale phase-field model. Atomic-scale structure analysis demonstrated that opposite changes in the lattice parameters are observed until the inverse Li content x = 0.75; then, structure collapses due to complete extraction of Li from between transition metal layers. Combined-phase investigations represent the highest phase barrier and steepest chemical potential after x = 0.75, leading to phase transformations to highly Li-deficient phases with an inactive character. Abrupt phase transformations with heterogeneous structural collapse after x = 0.81 (~220 mAh g−1) were identified in the nanodomain. Further, meso-scale strain distributions show around 5% of anisotropic contraction with lower critical energy release rates, which cause not only micro-crack generations of secondary particles on the interfaces between the contracted primary particles, but also mechanical instability of primary particles from heterogeneous strain changes.
Fe- and Cu-codoped ZnO was previously reported as a room-temperature dilute magnetic semiconductor. We have investigated the origin of the ferromagnetism in Zn0.95−xFe0.05CuxO using the zero-field Fe57 nuclear magnetic resonance and neutron diffraction. These measurements reveal that some Fe ions of Zn0.95−xFe0.05CuxO form a secondary phase, ZnFe2O4. Detailed comparison of nuclear magnetic resonance spectra of Zn0.95−xFe0.05CuxO, bulk ZnFe2O4 with normal spinel structure, and nanocrystalline ZnFe2O4 with inverted spinel structure shows that the secondary phase possesses an inverted spinel structure and is ferrimagnetic at room temperature, while normal zinc ferrite is nonmagnetic. The ferromagnetism in Fe- and Cu-codoped ZnO stems from the secondary phase, while the majority of Fe ions substituted into the ZnO lattice appears to remain magnetically inert.
A pre-strained polystyrene (PS) polymer sheet is deformed when it approaches the glass transition state as a result of light absorption. By controlling the light absorption of the polymer sheet, non-contact sequential folding can be accomplished. Line patterns of different transparencies and shapes are used to control the light absorption. The line pattern shape is closely related to the folding angle and folding start time. The relation between the line pattern design and folding performance was evaluated experimentally to develop a technique for folding PS sheets. The results show that sequential folding of PS sheets can be accomplished by changing the degree of transparency of the line pattern. Using the technique developed in this study, self-folding origami structures with complicated shapes can be designed and manufactured.
Recently, the substitution of inactive elements has been reported as a promising strategy for improving the structural stability and electrochemical performance of layered cathode materials for sodium-ion batteries (SIBs). In this regard, we investigated the positive effects of inactive Ti substitution into O3-type NaFe 0.25 Ni 0.25 Mn 0.5 O 2 based on first-principles calculations and electrochemical experiments. After Ti substitution, Na[Ti 0.03 (Fe 0.25 Ni 0.25 Mn 0.5 ) 0.97 ]O 2 exhibits improved capacity retention and rate capability compared with Ti-free NaFe 0.25 Ni 0.25 Mn 0.5 O 2 . Such an improvement is primarily attributed to the enhanced structural stability and lowered activation energy for Na + migration, which is induced by Ti substitution in the host structure. Based on first-principles calculations of the average net charges and partial densities of states, we suggest that Ti substitution effectively enhances the binding between transition metals and oxygen by increasing the oxygen electron density, which in turn lowers the energy barrier of Na + migration, leading to a notable enhancement in the rate capability of Na[Ti 0.03 (Fe 0.25 Ni 0.25 Mn 0.5 ) 0.97 ]O 2 . Compared with other inactive elements (e.g., Al and Mg), Ti is a more suitable substituent for improving the electrochemical properties of layered cathode materials because of its large total charge variation contributing to capacity. The results of this study provide practical guidelines for developing highly reliable layered cathode materials for SIBs.
Obesity is associated with higher risks of cardiac arrhythmias. Although this may be partly explained by concurrent cardiometabolic ill-health, growing evidence suggests that increasing adiposity independently confers risk for arrhythmias. Amongst fat depots, epicardial adipose tissue (EAT) exhibits a proinflammatory secretome, and given the lack of fascial separation, has been implicated as a transducer of inflammation to the underlying myocardium. The present review explores the mechanisms underpinning adverse electrophysiological remodelling as a consequence of EAT accumulation and the consequent inflammation. We first describe the physiological and pathophysiological function of EAT and its unique secretome, and subsequently discuss the evidence for ionic channel and connexin expression modulation as well as fibrotic remodelling induced by cytokines and free fatty acids that are secreted by EAT. Finally, we highlight how weight reduction and regression of EAT volume may cause reverse remodelling to ameliorate arrhythmic risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.