The growth of tetracene on GaSe half-sheet passivated Si(111) is investigated under ultrahigh vacuum (UHV) using low-energy electron diffraction (LEED) and photoelectron spectroscopy (PS). A highly ordered thin-film growth was observed in the initial stages of the deposition process. All proposed structures form a coincidence lattice with the underlying substrate, due to the influence of the molecule-substrate interactions and are built up by either flat lying tetracene molecules at low coverage or tilted molecules at higher coverages. Photoelectron spectroscopy (XPS/UPS) shows that the deposited tetracene molecules induce band bending in the silicon substrate. No band bending was observed in the tetracene film, and an interface dipole potential of 0.45 eV was measured between the GaSe passivated Si(111) surface and the tetracene film.
The simple and fast ultrasonic-assisted synthesis of high-performance, low-interfacial-resistance Bi2O3/Bi2S3 composite semiconductors is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.