In this study, a phosphorous-containing polyol (P-polyol) was synthesized and reacted with isophorone diisocyanate (IPDI) to produce water-dispersed polyurethane. To synthesize waterborne polyurethanes (WPUs), mixtures of P-polyol and polycarbonate diol (PCD) were reacted with IPDI, followed by the addition of dimethylol propionic acid, to confer hydrophilicity to the produced polyurethane. An excess amount of water was used to disperse polyurethane in water, and the terminal isocyanate groups of the resulting WPUs were capped with ethylene diamine. P-polyol:PCD molar ratios of 0.1:0.9, 0.2:0.8, and 0.3:0.7 were used to synthesize WPUs. The films prepared by casting and drying the synthesized WPUs in plastic Petri dishes were used to test the changes in physical properties induced by changing the P-polyol:PCD molar ratio. The experimental results revealed that the tensile strength of PU-10, the WPU with a P-polyol:PCD molar ratio of 0.1:0.9, was 16% higher than that of the reference P-polyol–free WPU sample. Moreover, the thermal decomposition temperature of PU-10 was 27 °C higher than that of the reference sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.