Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron‐specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)‐PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [3H]adenosine uptake and [3H]nitrobenzylthioinosine binding, relative to samples from wild‐type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine‐induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol‐induced motor incoordination in wild‐type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT‐PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine‐related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Foot-and-Mouth Disease Virus (FMDV), the causative agent of Foot-and-Mouth Disease, is a highly feared, economically devastating transboundary pathogen. This is due to the virus' extremely contagious nature and its ability to utilize multiple transmission routes. As such, rapid and accurate diagnostic testing is imperative to the control of FMD. Identification of the FMDV serotype is necessary as it provides the foundation for appropriate vaccine selection and aids in outbreak source tracing. With the vast genetic diversity, there is a desperate need to be able to characterize FMDV without relying on prior knowledge of viral serotypes. In this study, the Neptune bioinformatics tool was used to identify genetic signatures specific to each Southern African Territories (SAT) 1, 2 and 3 genomes but exclusionary to the other circulating FMDV serotypes (A, O, Asia1, and the heterologous SAT1, SAT2 and/or SAT3). Identification of these unique genomic regions allowed the design of TaqMan-based real-time reverse transcriptase PCR (rRT-PCR) primer/probe sets for SAT1, SAT2 and SAT3 viruses. These assays were optimized using prototypic FMDV cell culture isolates using the same reagents and thermocycling conditions as the FMDV pan-serotype 3D rRT-PCR assay. Cross-reactivity was evaluated in tandem with the FMDV pan-serotype 3D rRT-PCR utilizing representative strains from FMDV serotypes A, O, Asia1, SAT1, SAT2 and SAT3. The SAT1, SAT2, and SAT3 primer/probe sets were specific for the homologous serotype and exclusionary to all others. SAT1 and SAT3 primer/probe sets were able to detect several topotypes, whereas the SAT2 assay was revealed to be specific for topotype VII. The SAT2 topotype VII specificity was possibly due to the use of sequence data deposited post-2011to design the rRT-PCR primers and probes. Each assay was tested against a panel of 99 bovine tissue samples from Nigeria, where SAT2 topotype VII viruses were correctly identified and no cross-reactivity was exhibited by the SAT1 and 3 assays. These novel SAT1, SAT3 and SAT2 topotype VII rRT-PCR assays have the potential to detect and differentiate circulating FMD SAT viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.