The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.
Localized surface plasmon resonance of metallic nanostructures receives noticeable attention in photonics, electronics, catalysis, and so on. Core-shell nanostructures are particularly attractive due to the versatile tunability of plasmonic properties along with the independent control of core size, shell thickness, and corresponding chemical composition, but they commonly suffer from difficult synthetic procedures. We present a reliable and controllable route to a highly ordered uniform Au@Ag core-shell nanoparticle array via block copolymer lithography and subsequent seeded-shell growth. Size-tunable monodisperse Au nanodot arrays are generated by block copolymer self-assembly and are used as seed layers to grow Ag shells with variable thickness. The resultant Au@Ag core-shell nanoparticle arrays exhibit widely tunable broadband enhancement of plasmonic resonance, greatly surpassing single-element nanoparticle or homogeneous alloy nanoparticle arrays. Surface-enhanced Raman scattering of the core-shell nanoparticle arrays showed an enhancement factor greater than 270 from Au nanoparticle arrays.
We propose and prove that it is possible to decouple the electric and magnetic response of an array of conductive nanoparticles and realize a very wide range of combinations of effective permittivities and permeabilities. The principle exploits the large differences in the Thomas-Fermi screening length for longitudinal electric fields and the classical penetration depth for time-varying transverse magnetic fields. This non-resonant principle allows frequency invariance of the effective material properties with a bandwidth spanning many octaves, orders of magnitude larger than previous resonant metamaterials. An effective medium with a record-high refractive index over broadband is demonstrated as an example.
The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.