Viscoelastic properties of wet and dry human compact bone were studied in torsion and in bending for both the longitudinal and transverse directions at frequencies from 5 mHz to 5 kHz in bending to more than 50 kHz in torsion. Two series of tests were done for different longitudinal and transverse specimens from a human tibia. Wet bone exhibited a larger viscoelastic damping tan delta (phase between stress and strain sinusoids) than dry bone over a broad range of frequency. All the results had in common a relative minimum in tan delta over a frequency range, 1 to 100 Hz, which is predominantly contained in normal activities. This behavior is inconsistent with an optimal "design" for bone as a shock absorber. There was no definitive damping peak in the range of frequencies explored, which could be attributed to fluid flow in the porosity of bone.
Porous strategies based on nanoengineering successfully mitigate several problems related to volume expansion of alloying anodes. However, practical application of porous alloying anodes is challenging because of limitations such as calendering incompatibility, low mass loading, and excessive usage of nonactive materials, all of which cause a lower volumetric energy density in comparison with conventional graphite anodes. In particular, during calendering, porous structures in alloying‐based composites easily collapse under high pressure, attenuating the porous characteristics. Herein, this work proposes a calendering‐compatible macroporous architecture for a Si–graphite anode to maximize the volumetric energy density. The anode is composed of an elastic outermost carbon covering, a nonfilling porous structure, and a graphite core. Owing to the lubricative properties of the elastic carbon covering, the macroporous structure coated by the brittle Si nanolayer can withstand high pressure and maintain its porous architecture during electrode calendering. Scalable methods using mechanical agitation and chemical vapor deposition are adopted. The as‐prepared composite exhibits excellent electrochemical stability of >3.6 mAh cm−2, with mitigated electrode expansion. Furthermore, full‐cell evaluation shows that the composite achieves higher energy density (932 Wh L−1) and higher specific energy (333 Wh kg−1) with stable cycling than has been reported in previous studies.
Practical applications of high gravimetric and volumetric capacity anodes for next-generation lithium-ion batteries have attracted unprecedented attentions, but still faced challenges by their severe volume changes, rendering low Coulombic efficiency and fast capacity fading. Nano and void-engineering strategies had been extensively applied to overcome the large volume fluctuations causing the continuous irreversible reactions upon cycling, but they showed intrinsic limit in fabrication of practical electrode condition. Achieving high electrode density is particularly paramount factor in terms of the commercial feasibility, which is mainly dominated by the true density and tapping density of active material. Herein, based on finite element method calculation, micron-sized double passivation layered Si/C design is introduced with restrictive lithiation state, which can withstand the induced stress from Li insertion upon repeated cycling. Such design takes advantage in structural integrity during long-term cycling even at high gravimetric capacity (1400 mAh g −1). In 1 Ah pouch-type full-cell evaluation with high mass loading and electrode density (≈3.75 mAh cm −2 and ≈1.65 g cm −3), it demonstrates superior cycle stability without rapid capacity drop during 800 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.