Novel concepts for developing a surface-enhanced Raman scattering (SERS) sensor based on biocompatible materials offer great potential in versatile applications, including wearable and in vivo monitoring of target analytes. Here, we report a highly sensitive SERS sensor consisting of a biocompatible silk fibroin substrate with a high porosity and gold nanocracks. Our silk-based SERS detection takes advantage of strong local field enhancement in the nanoscale crack regions induced by gold nanostructures evaporated on a porous silk substrate. The SERS performance of the proposed sensor is evaluated in terms of detection limit, sensitivity, and linearity. Compared to the performance of a counterpart SERS sensor with a thin gold film, SERS results using 4-ABT analytes present that a significant improvement in the detection limit and sensitivity by more than 4 times, and a good linearity and a wide dynamic range is achieved. More interestingly, overlap is integral, and a quantitative measure of the local field enhancement is highly consistent with the experimental SERS enhancement.
In this study, surface-enhanced Raman scattering (SERS) scheme is combined with localized surface plasmon resonance (LSPR) detection on a thin gold film with stripe patterns of gold nanoparticles (GNPs) via convective self-assembly (CSA) method. The potential of dual modal plasmonic substrates was evaluated by binding 4-ABT and IgG analytes, respectively. SERS experiments presented not only a high sensitivity with a detection limit of 4.7 nM and an enhancement factor of 1.34 × 105, but an excellent reproducibility with relative standard deviation of 5.5%. It was found from plasmonic sensing experiments by immobilizing IgG onto GNP-mediated gold film that detection sensitivity was improved by more than 211%, compared with a conventional bare gold film. Our synergistic SERS–LSPR approach based on a simple and cost-effective CSA method could open a route for sensitive, reliable and reproducible dual modal detection to expand the application areas.
Surface enhanced Raman spectroscopy (SERS) based on plasmonic colocalization between DNA attached gold nanoparticles and silver nanoislands substrates. Raman spectra measured on a silver nanoislands substrate were observed 20 and 1.8 folds signal enhancements relative to them on a film substrate with high and low numerical apertures of lenses, respectively. By comparison between calculations and experiments results, we proved that distinct differences of the signal enhancements came from changing field of view on random nanoislands substrate. Consequently, we show that nanoislands substrates with a precise position control can be a good candidate for a SERS substrate which can achieve significant signal enhancements without a complicated lithographic process.
Biocompatible optical fibers and waveguides are gaining attention as promising platforms for implantable biophotonic devices. Recently, the distinct properties of silk fibroin were extensively explored because of its unique advantages, including flexibility, process compatibility, long-term biosafety, and controllable biodegradability for in vitro and in vivo biomedical applications. In this study, we developed a novel silk fiber for a sensitive optical sensor based on surface-enhanced Raman spectroscopy (SERS). In contrast to conventional plasmonic nanostructures, which employ expensive and time-consuming fabrication processes, gold nanoparticles were uniformly patterned on the top surface of the fiber employing a simple and cost-effective convective self-assembly technique. The fabricated silk fiber-optic SERS probe presented a good performance in terms of detection limit, sensitivity, and linearity. In particular, the uniform pattern of gold nanoparticles contributed to a highly linear sensing feature compared to the commercial multi-mode fiber sample with an irregular and aggregated distribution of gold nanoparticles. Through further optimization, silk-based fiber-optic probes can function as useful tools for highly sensitive, cost-effective, and easily tailored biophotonic platforms, thereby offering new capabilities for future implantable SERS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.