Contact charge electrophoresis (CCEP) is an electrically controllable manipulation technique of conductive droplets and particles by charging and discharging when in contact with the electrode. Given its straightforward operation mechanism, low cost, and ease of system construction, it has gained traction as a versatile and potential strategy for the realistic establishment of lab-on-a-chip (LOC) in various engineering applications. We present a CCEP-based digital microfluidics (DMF) platform with two parallel electrode modules comprising assembled conventional pin header sockets, allowing for efficient mixing through horizontal and vertical shaking via droplet reciprocating motions. The temporal chromic change caused by the chemical reaction between the pH indicator and base solutions within the shaking droplets is quantitatively analyzed under various CCEP actuation conditions to evaluate the mixing performance in shaking droplets by vertical and horizontal reciprocating motions on the DMF platform. Furthermore, mixing flow patterns within shaking droplets are successfully visualized by a high-speed camera system. The suggested techniques can mix samples and reagents rapidly and efficiently in droplet-based microreactors for DMF applications, such as biochemical analysis and medical diagnostics.
Digital microfluidics (DMF) has garnered considerable interest as a straightforward, rapid, and programmable technique for controlling microdroplets in various biological, chemical, and medicinal research disciplines. This study details the construction of compact and lowcost 3D DMF platforms with programmable contact charge electrophoresis (CCEP) actuations by employing electrode arrays composed of a small commercial pin socket and a 3D-printed housing. We demonstrate basic 3D droplet manipulation on the platform, including horizontal and vertical transport via lifting and climbing techniques, and droplet merging. Furthermore, phenolphthalein reaction and precipitation process are evaluated using the proposed 3D DMF manipulations as a proof of concept for chemical reaction-based analysis and synthesis. The threshold voltage (or electrical field) and maximum vertical transport velocity are quantified as a function of applied voltage and electrode distance to determine the CCEP actuation conditions for 3D droplet manipulations. The ease of manufacturing and flexibility of the proposed 3D DMF platform may provide an effective technique for programmable 3D manipulation of droplets in biochemical and medical applications, such as biochemical analysis and medical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.