The biggest challenge facing the world in 2020 was the pandemic of the coronavirus disease (COVID-19). Since the start of 2020, COVID-19 has invaded the world, causing death to people and economic damage, which is cause for sadness and anxiety. Since the world has passed from the first peak with relative success, this should be evaluated by statistical analysis in preparation for potential further waves. Artificial neural networks and logistic regression models were used in this study, and some statistical indicators were extracted to shed light on this pandemic. WHO website data for 32 European countries from 11th of January 2020 to 29th of May 2020 was utilized. The rationale for choosing the stated methodological tools is that the classification accuracy rate of artificial neural networks is 85.6% while the classification accuracy rate of logistic regression models 80.8%.
We focus on estimating the stress-strength reliability model when the strength variable is subjected to the step-stress partially accelerated life test. Based on the assumption that both stress and strength random variables follow Weibull distribution with a common first shape parameter, the inferences for this reliability system are constructed. The maximum likelihood, two parametric bootstraps, and Bayes estimates are obtained. Moreover, approximate confidence intervals, asymptotic variance-covariance matrix, and highest posterior density credible intervals are derived. A simulation study and application to real-life data are conducted to compare the proposed estimation methods developed here and also check the accuracy of the results.
This research aims to model the COVID-19 in different countries, including Italy, Puerto Rico, and Singapore. Due to the great applicability of the discrete distributions in analyzing count data, we model a new novel discrete distribution by using the survival discretization method. Because of importance Marshall- Olkin family and the inverse Toppe-Leone distribution, both of them were used to introduce a new discrete distribution called Marshall–Olkin inverse Toppe-Leone distribution, this new distribution namely the new discrete distribution called discrete Marshall- Olkin Inverse Toppe-Leone (DMOITL). This new model posses only two parameters, also many properties have been obtained such as reliability measures and moment functions. The classical method as likelihood method and Bayesian estimation methods are applied to estimate the unknown parameters of DMOITL distributions. The Monte–Carlo simulation procedure is carried out to compare the maximum likelihood and Bayesian estimation methods. The highest posterior density (HPD) confidence intervals are used to discuss credible confidence intervals of parameters of new discrete distribution for the results of the Markov Chain Monte Carlo technique (MCMC).
An extension of the cosine generalized family is presented in this paper by using the cosine trigonometric function and method of parameter induction concurrently. Prominent characteristics of the proposed family along with useful results are extracted. Moreover, two new subfamilies and several special models are also deduced. A four-parameter model called an Extended Cosine Weibull (ECW) with its mathematical properties is studied deeply. Graphical study reveals that the new model adopts right- and left-skewed, symmetrical, and reversed-J density shapes, while all possible monotone and nonmonotone shapes are exhibited by the hazard rate function. The maximum likelihood technique is exercised for parametric estimation, while estimation performance is accessed via Monte Carlo simulation study graphically and numerically. The superiority of the presented model over several outstanding and competing models is confirmed via three reliability and survival dataset applications.
This paper aims to introduce a superior discrete statistical model for the coronavirus disease 2019 (COVID-19) mortality numbers in Saudi Arabia and Latvia. We introduced an optimal and superior statistical model to provide optimal modeling for the death numbers due to the COVID-19 infections. This new statistical model possesses three parameters. This model is formulated by combining both the exponential distribution and extended odd Weibull family to formulate the discrete extended odd Weibull exponential (DEOWE) distribution. We introduced some of statistical properties for the new distribution, such as linear representation and quantile function. The maximum likelihood estimation (MLE) method is applied to estimate the unknown parameters of the DEOWE distribution. Also, we have used three datasets as an application on the COVID-19 mortality data in Saudi Arabia and Latvia. These three real data examples were used for introducing the importance of our distribution for fitting and modeling this kind of discrete data. Also, we provide a graphical plot for the data to ensure our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.