Moving target defense (MTD) is a proactive defense approach that aims to thwart attacks by continuously changing the attack surface of a system (e.g., changing host or network configurations), thereby increasing the adversary's uncertainty and attack cost. To maximize the impact of MTD, a defender must strategically choose when and what changes to make, taking into account both the characteristics of its system as well as the adversary's observed activities. Finding an optimal strategy for MTD presents a significant challenge, especially when facing a resourceful and determined adversary who may respond to the defender's actions. In this paper, we propose finding optimal MTD strategies using deep reinforcement learning. Based on an established model of adaptive MTD, we formulate finding an MTD strategy as finding a policy for a partially observable Markov decision process. To significantly improve training performance, we introduce compact memory representations. To demonstrate our approach, we provide thorough numerical results, showing significant improvement over existing strategies.
Transactive microgrids have emerged as a transformative solution for the problems faced by distribution system operators due to an increase in the use of distributed energy resources and rapid growth in renewable energy generation. Transactive microgrids are tightly coupled cyber and physical systems, which require resilient and robust financial markets where transactions can be submitted and cleared, while ensuring that erroneous or malicious transactions cannot destabilize the grid. In this paper, we introduce TRANSAX, a novel decentralized platform for transactive microgrids. TRANSAX enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, reducing the load on the distribution system operator. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping power flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy, and we demonstrate its performance using simulation results.CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Security and privacy;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.