Stable and acceptable camel meat emulsion can be developed from camel meat. Increasing the cooking core temperature of meat batter improved the quality of produced sausages. Therefore, camel meat emulsion sausages might be a potential alternative for beef particularly in Asian and African countries. © 2015 Society of Chemical Industry.
Edible coats derived from a natural animal source and conveying natural active compounds to meat products may be the golden solution that sums up various preserving benefits. In this study, the main goal was to ascertain whether casein coat and casein coat enhanced with 1000 ppm Sorbic acid and 600 ppm ascorbic acid may be utilized to increase the acceptability of frozen beef kofta. In addition to the control trial, two coats were compared: a plain casein coat and a casein coat enhanced with 1000 ppm Sorbic acid and 600 ppm ascorbic acid. Organoleptic, bacteriological, proximate chemical analysis, pH, thiobarbituric acid reactive substances ("TBARS"), cooking characteristics, and instrumental colour evaluations were examined for each kofta treatment during three months of storage at -18°C. Results revealed that casein coats were able to boost several sensory attributes of raw and cooked kofta in addition to the overall acceptability of the raw product. Moreover, coats significantly decreased all tested bacterial counts and thiobarbituric acid reactive substance (TBARS) values in addition to maintaining compositional parameters from deteriorating during the storage period. As for cooking characteristics, they were all improved by applying casein coats when compared to the control. Casein coated with acid surpassed the plain casein coats in improving all parameters in addition to having the best colour scores for all three months of storage. It has been concluded that casein coats can be utilized to improve the quality of beef kofta without colour or flavour problems.
T he water buffaloes (Bubalus bubalis) have a total population of 204 million spreading worldwide in 129 countries. Around 198 million of them (97.0%) are reared in Asia, with India accounting for 54% of them, 3.50 million are in Africa, almost entirely in Egypt (3.4 million), 1.98 million in America, and 0.47 million in European countries. Moreover, the world production of buffalo meat is about 4.30 million tons of which 90% from Asia and 1% from African countries (FAO, 2021). Buffalo meat is rated healthier than beef due to its lower contents of fat and cholesterol (Kandeepan et al., 2009), in addition to its higher contents of protein (Naveena et al., 2004) and oleic fatty acid (Tamburrano et al., 2019), which considered one of the most important fatty acid for the human body. Although buffalo meat is equivalent to beef in most of the physicochemical and organoleptic parameters (Anjaneyulu et al., 1990), it is rarely used primarily as table meat because most buffaloes are slaughtered when their useful working life has ended, resulting in poor meat quality characteristics (Naveena and Kiran, 2014), especially unacceptable toughness and darker color (Modi et al., 2004).The reasonable domestic needs, the higher lean and lower fat as well as good binding properties (Kandeepan et al., 2009) make buffalo a potential source of good technological properties meat that has recently gained significance. Moreover, the rapid and continuous increase in the beef price, which is the basic raw material for manufacturing different meat products made many consumers unable to
The current study was carried out to compare the safety and quality between the high price (premium) and low price (economic) meat products that are commonly distributed in the Egyptian markets. To achieve this goal, 200 samples from the various grades of Egyptian beef luncheon sausage and burger patties were collected randomly from different Egyptian markets and subjected to physicochemical, microbiological, and histological examinations. Results revealed that both grades of examined luncheon samples had higher moisture content than its permissible limits. However, the protein contents were lower than the established limit in both grades of all examined products. Results also showed that all examined samples showed fatty acids profile was nearly similar to that of chicken and buffalo meat than that of beef. Moreover, the results revealed that the samples that exceeded the permissible limits of TBARS and TVBN values were higher in premium than those of economic products for both luncheon and burger patties. Conversely, the economic luncheon showed a higher percentage of samples that exceeded the permissible limit of residual nitrite when compared to the premium one. Both grades of all examined products contained higher levels of monosodium glutamate (MSG) than that of the established level, moreover; all examined bacterial groups exceeded their stated limits in most examined samples. Histological examination revealed that all examined products contained a low percentage of muscular tissue and higher amounts of fat, heart muscle, connective tissue, skin, bone, cartilage, and carbohydrates. This study proved that both chemical and histological examinations provide an effective tool to detect the various methods of adulteration in meat products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.