It is proposed to use ceramic high temperature heat exchanger as a sulfuric acid decomposer for hydrogen production within the sulfur iodine thermo-chemical cycle. The decomposer is manufactured using fused ceramic layers that allow creation of channels with dimensions below one millimeter. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer, stresses and chemical reactions in the decomposer. Fluid, thermal and chemical reaction analyses are performed using FLUENT software. Temperature distribution in the solid is imported to ANSYS software and used together with pressure as the load for stress analysis. Results of this research can be used as a basis for investigation optimal design of the decomposer that can provide maximum chemical decomposition performance while maintaining stresses within design limits.
Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.