The present study numerically evaluates the influence of hole inclination angle with a hole imperfection on film cooling performance. Here, the hole imperfection due to laser percussion drilling is modelled as a half torus. Three hole inclination angles were investigated: 35°, 45° and 55°. Furthermore, every case was evaluated at three blowing ratios: 0.45, 0.90 and 1.25. Each case is compared to a baseline case where the hole imperfection is absent. The results indicate that the hole inclination angle has a strong influence on the film effectiveness performance when a hole imperfection is present. Centerline effectiveness plots reveal a maximum effectiveness deterioration of 89% for a blowing ratio of 0.90 in the vicinity of the hole exit. Dimensionless temperature contours show that the jet produced in the presence of an imperfection is much more compact causing the counter rotating vortex pair to be closer to each other. This enhances the jet to lift off from the plate.
The current research is concerned with studying the instantaneous properties of the detonation waves in a RDRE by tracking each individual wave and recording its position, velocity, and peak intensity as it travels around the annulus. This information is retrieved by a non-intrusive method consisting of using a data mining technique, the k-means algorithm, to distinguish each detonation from each other in a particular frame. An algorithm was then developed to match the detonations of a current frame to the ones of a previous frame. The code was validated against results found from the back-end imaging method developed by the Air Force Research Laboratory with excellent agreement. Results for two and three-wave mode cases show that the instantaneous detonation wave speeds oscillate around the mode locked average wave speed computed from a detonation surface. Moreover, the investigation of the relationship of the detonation’s peak light intensity with the azimuthal position revealed to also be oscillatory but more distinct.
Within the power generation community, the rotating detonation engine (RDE) is only growing in popularity with its increased performance, simple mechanism, and operation. Although significant testing is underway to characterize the RDE for integration with conventional gas turbines, this entire system is still at a relatively low technology readiness level. In the midst of RDE research, there is an initiative to understand solid particle seeding effects in the detonation performance. Under investigation at the University of Central Florida is a Department of Energy (DOE) 6 inch RDE, with a solid particle seeder in parallel with its H2 and air flow lines. Previous work on this system involved carbon particle detonation; however, the tested particles were taken one step further to include more sustainable, greener hydrocarbon particles. Testing of powdered sugar, peanut flour, and cornstarch, along with previous carbon black tests have shown not only successful detonability, but a noticeable effect on the detonation wave dynamics. Side by side with a particle burning model being developed, an operational map can be determined for the hydrocarbon particles particularly, which can be tuned with the local flow conditions to achieve peak operability while replacing fuels with sustainable alternatives that could even be grown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.