This study examines the forecasting power of the gas price and uncertainty indices for crude oil prices. The complex characteristics of crude oil price such as a non-linear structure, time-varying, and non-stationarity motivate us to use a newly proposed approach of machine learning tools called XGBoost Modelling. This intelligent tool is applied against the SVM and ARIMAX (p,d,q) models to assess the complex relationships between crude oil prices and their forecasters. Empirical evidence shows that machine learning models, such as the SVM and XGBoost models, dominate traditional models, such as ARIMAX, to provide accurate forecasts of crude oil prices. Performance assessment reveals that the XGBoost model displays superior prediction capacity over the SVM model in terms of accuracy and convergence. The superior performance of XGBoost is due to its lower complexity and costs, high accuracy, and rapid processing times. The feature importance analysis conducted by the Shapley additive explanation method (SHAP) highlights that the different uncertainty indexes and the gas price display a significant ability to forecast future WTI crude prices. Additionally, the SHAP values suggest that the oil implied volatility captures valuable forecasting information of gas prices and other uncertainty indices that affect the WTI crude oil price.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.