Brown seaweeds are a good source of bioactive compounds, particularly of phlorotannins, which may exert a wide spectrum of pharmacological properties. In the present study, phlorotannins of S. vulgare were extracted using a 70% acetone solution and the crude extract was further purified through liquid–liquid partition, giving rise to n-hexane, ethyl acetate and aqueous residue fractions. The crude extract and the purified fractions were evaluated for potential antioxidant abilities as well as for inhibitory potential towards the digestive enzymes α-amylase and pancreatic lipase, and anti-inflammatory potential through the hindering of albumin denaturation. Overall, the ethyl acetate fraction was the richest in phlorotannins (9.4 ± 0.03 mg PGE/g) and was also the most promising regarding the tested bioactive properties. Of note, its inhibitory potential towards α-amylase was about nine times that of the commercial drug acarbose and its inhibitory activity against high temperature-induced protein denaturation was superior to that of the non-steroidal drug ketoprofen. According to UHPLC-DAD-ESI-MS/MS analysis, this fraction contained a range of phlorotannins with at least six units of phloroglucinol, including dibenzodioxine-1,3,6,8-tetraol, fuhalol, pentaphlorethol, fucopentaphlorethol and dihydroxypentafuhalol, in addition to several less common phlorotannin sulfate derivatives.
In the present study, α-amylase and pullulanase from Clavispora lusitaniae ABS7 isolated from wheat seeds were studied. The gel filtration and ion-exchange chromatography revealed the presence of α-amylase and pullulanase activities in the same fraction with yields of 23.88% and 21.11%, respectively. SDS-PAGE showed a single band (75 kDa), which had both α-amylase (independent of Ca2+) and pullulanase (a calcium metalloenzyme) activities. The products of the enzymatic reaction on pullulan were glucose, maltose, and maltotriose, whereas the conversion of starch produced glucose and maltose. The α-amylase and pullulanase had pH optima at 9 and temperature optima at 75 and 80 °C, respectively. After heat treatment at 100 °C for 180 min, the pullulanase retained 42% of its initial activity, while α-amylase maintained only 38.6%. The cations Zn2+, Cu2+, Na+, and Mn2+ increased the α-amylase activity. Other cations Hg2+, Mg2+, and Ca2+ were stimulators of pullulanase. Urea and Tween 80 inhibited both enzymes, whereas EDTA only inhibited pullulanase. In addition, the amylopullulanase retained its activity in the presence of various commercial laundry detergents. The performance of the alcalothermostable enzyme of Clavispora lusitaniae ABS7 qualified it for the industrial use, particularly in detergents, since it had demonstrated an excellent stability and compatibility with the commercial laundry detergents.
Amylases are among the most important enzymes used in various industries. They represent approximately 30% of the world enzyme production. These are of ubiquitous occurrence and hold the maximum market share of enzyme sales. These comprise hydrolases, which hydrolyze starch to diverse products as dextrins, and progressively smaller polymers composed of glucose units. They are highly demanded in various arrays such as food, pharmaceuticals, textiles, detergents, etc. However, enzymes from mold and bacterial source have dominated applications in industrial sectors while few species of yeast were studied for the amylases production. This review focuses on the amylolytic yeasts and their enzymes and we were interested at α-amylase and pullulanase, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.
In this work, sequential optimization strategy, based on statistical designs, was employed to enhance the production of α-amylase by Aspergillus niger ATCC 16404. This statistical study consists of optimizing the factors that influence the production of α-amylase of A. niger ATCC 16404. Indeed, another statistical study has allowed the selection of 5 factors (pH, starch, yeast extract, "corn steep liquor", CaCl2 and salts) affecting both the development of mould (biomass) and that of the enzyme production. The central composite design allows the determination of the optimum of these selected factors and a quadratic model explains the factor reaction. Thus, the "ridge analysis" method, has led to maximizing the experimental reaction. The results indicate that the production rate of α-amylase is maximized in the presence of starch at 8.97 g/l, yeast extract at 2.86 g/l, CaCl2 at 1.224 g/l, salts (composed of 25% FeSO4, 7H2O, 25% MnSO4 and 50% MgCl2, 6H2O): FeSO4, 7H2O, MnSO4 0.1518 g/l and MgCl2, 6H2O at 0.3036 g/l. As for the pH, it is maintained at the rate of 5.68.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.