Background: Antimicrobial resistance is a serious public health problem worldwide. We aimed to investigate the prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment. Methods: Studies on PubMed, Embase, and the Cochrane Library published from January 1, 2000 to January 1, 2018 were searched. The quality of the included studies was assessed by the modified critical appraisal checklist recommended by the Joanna Briggs Institute. All analyses were conducted using Biostat's Comprehensive Meta-Analysis version 2.0. Depending on the heterogeneity test for each antibiotic, we used a random-or fixedeffect model for pooled prevalence of drug resistance. Studies were eligible if they had investigated and reported resistance in two or more isolation sources (human, animal, food, or environment). To decrease heterogeneity and bias, we excluded studies that had reported E. coli drug resistance isolated from one source only. We included publications that reported drug resistance with minimum inhibitory concentration or disk diffusion method (DDM) as antibiotic-susceptibility tests. Results: Of the 39 included studies, 20 used the DDM and 19 minimum inhibitory concentration for their antibiotic-susceptibility testing. Colistin had the lowest prevalence, with 0.8% (95% CI 0.2%-3.8%) and amoxicillin the highest, with 70.5% (95% CI 57.5%-81%) in isolated human E. coli strains tested with the DDM. To assess historical changes in antimicrobial drug resistance, subgroup analysis from 2000 to 2018 showed a significant increase in ciprofloxacin resistance. Conclusion: Monitoring and evaluating antibiotic-sensitivity patterns and preparation of reliable antibiotic strategies may lead to better outcomes for inhibition and control of E. coli infections in different regions of the world.
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Background: This study evaluates the epidemiology and antimicrobial resistance profile of Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) isolated from clinical specimens in children admitted to Mofid Children's Hospital. Methods: This was a retrospective study of the patients' clinical specimens collected from January 2013 until the end of December 2018. All specimens were evaluated to determine the presence of infection-causing agents using a BACTEC 9120 blood culture. Isolation and identification of bacterial strains were performed using conventional biochemical tests. Antibiotic resistance was determined using Kirby-Bauer disk diffusion and broth microdilution methods. Results were interpreted according to CLSI and EUCAST. Results: A total of 1130 different pathogenic bacteria were detected from 14,690 different clinical specimens and the overall detection rate was 7.7% (1130/14,690). Among bacterial pathogen isolated from clinical specimens, 55% (n=622) were GNB and 45% (n=508) were GPB. The predominant GNB isolates were Pseudomonas aeruginosa, Klebsiella spp., Acinetobacter baumannii, Escherichia coli, Enterobacter spp., Citrobacter spp., respectively. Among GPB, CoNS was the most frequent and Enterococcus spp. was found to have low levels of resistance to linezolid. In GNB, most A. baumannii and P. aeruginosa were ceftriaxone resistant. P. aeruginosa was found to have low levels of resistance to levofloxacin and ciprofloxacin. Conclusions: Our findings revealed that the resistance rate among GNB and GPB associated with different infections in children is very high. These results suggest a constant screening and follow-up programs for the detection of antibiotic resistance, and it also suggests to develop antimicrobial stewardship programs in Tehran, Iran.
Mycobacterial infections are considered to a serious challenge of medicine, and the emergence of MDR and XDR tuberculosis is a serious public health problem. Tuberculosis can cause high morbidity and mortality around the world, particularly in developing countries. The emergence of drug-resistant Mycobacterium infection following limited therapeutic technologies coupled with the serious worldwide tuberculosis epidemic has adversely affected control programs, thus necessitating the study of the role bacteriophages in the treatment of mycobacterial infection. Bacteriophages are viruses that are isolated from several ecological specimens and do not exert adverse effects on patients. Phage therapy can be considered as a significant alternative to antibiotics for treating MDR and XDR mycobacterial infections. The useful ability of bacteriophages to kill Mycobacterium spp has been explored by numerous research studies that have attempted to investigate the phage therapy as a novel therapeutic/diagnosis approach to mycobacterial infections. However, there are restricted data about phage therapy for treating mycobacterial infections. This review presents comprehensive data about phage therapy in the treatment of mycobacterial infection, specifically tuberculosis disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.