Aspect category detection (ACD) is a task of aspect-based sentiment analysis (ABSA) that aims to identify the discussed category in a given review or sentence from a predefined list of categories. ABSA tasks were widely studied in English; however, studies in other low-resource languages such as Arabic are still limited. Moreover, most of the existing Arabic ABSA work is based on rule-based or feature-based machine learning models, which require a tedious task of feature-engineering and the use of external resources like lexicons. Therefore, the aim of this paper is to overcome these shortcomings by handling the ACD task using a deep learning method based on a bidirectional gated recurrent unit model. Additionally, we examine the impact of using different vector representation models on the performance of the proposed model. The experimental results show that our model outperforms the baseline and related work models significantly by achieving an enhanced F1-score of more than 7%.
Aspect-based sentiment analysis (ABSA) is a challenging task of sentiment analysis that aims at extracting the discussed aspects and identifying the sentiment corresponding to each aspect. We can distinguish three main ABSA tasks: aspect term extraction, aspect category detection (ACD), and aspect sentiment classification. Most Arabic ABSA research has relied on rule-based or machine learning-based methods, with little attention to deep learning techniques. Moreover, most existing Arabic deep learning models are initialized using context-free word embedding models, which cannot handle polysemy. Therefore, this paper aims at overcoming the limitations mentioned above by exploiting the contextualized embeddings from pre-trained language models, specifically the BERT model. Besides, we combine BERT with a temporal convolutional network and a bidirectional gated recurrent unit network in order to enhance the extracted semantic and contextual features. The evaluation results show that the proposed method has outperformed the baseline and other models by achieving an F1-score of 84.58% for the Arabic ACD task. Furthermore, a set of methods are examined to handle the class imbalance in the used dataset. Data augmentation based on back-translation has shown its effectiveness through enhancing the first results by an overall improvement of more than 3% in terms of F1-score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.