Background:Despite the absence of dispute about the efficacy of bleaching agents, a prime concern is about their compromising effect on the enamel structure. This in vitro study investigated whether the addition of three different biomaterials, including nano-bioactive glass (n-BG)/nano-hydroxy apetite (n-HA)/nano-amorphous calcium phosphate (n-ACP), to bleaching agents can affect the fracture toughness (FT) and vickers hardness number (VHN) of bovine enamel.Materials and Methods:The crowns of the newly extracted permanent bovine incisors teeth were separated from the root and sectioned along their central line; one half serving as the control specimen and the other half as the test specimen. After mounting and polishing procedure, all the control specimens (C) were subjected to nano-indentation test to obtain the baseline values of FT. Then, the control specimens were exposed to a 38% hydrogen peroxide for four times, each time for 10 min. The test specimens were divided into three groups and treated as follows, with the same protocol used for the control specimens: Group 1; ACP + hydrogen peroxide (HP) mixed gel; Group 2 BG + HP mixed gel; and Group 3 HA + HP mixed gel. FT measurements with nano-indentation were carried out subsequent to bleaching experiments. Data were analyzed using SPSS and Kruskal–Wallis test (α = 0.05).Results:A significant difference in young's modulus (YM), VHN, and FT at baseline and subsequent to bleaching in control group was observed. However, no significant differences were found in YM, VHN, and FT between the test groups, compared to the respective baseline values.Conclusion:Under the limitations of the current study, it can be concluded that the n-HA, n-ACP, and n-BG could be potential biomaterials used to reduce the adverse effects of tooth bleaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.