This review presents the progress of the change of the PSK structure from 3 dimensional CH3NH3PbX3 to mixed cations or halides based PSKs and finally to Ruddlesden–Popper PSK two dimensional (2D) homologous structures regarding the lifetime improvement.
In this work, size-tunable polydimethylsiloxane (PDMS) microparticles are fabricated from a high-viscosity oil phase using a facile coflowing capillary microfluidic device and optimized aqueous phase composition. The dispersity of the microparticle size is tuned by engineering of the viscosity of the continuous phase and flow rate ratio that leads us to achieve monodisperse microparticles. Regarding the high potential of the PDMS microparticles for optical applications, efficient environmentally durable perovskite-based UV sensors are fabricated employing the designed size-tunable microparticles. Surprisingly, the UV sensors comprising CH 3 NH 3 PbBr 3 perovskite quantum dots as UV-sensitive nanocrystals embedded in transparent PDMS microparticles are water resistant because of the high hydrophobicity of PDMS. Remarkably, the UV sensors show a photoluminescence quantum yield as high as 75% that can be employed effortlessly as reusable leak detectors in different fluidic working systems.
The ratiometric photoluminescence (PL)‐based O2 sensitive probes provide built‐in self‐calibration for the correction of various target‐independent influencing factors. They attract particular attention to be used for O2 gas sensing and imaging. Herein, internal referencing ratiometric PL probes are fabricated that not only detect O2 concentration and temperature simultaneously but also remove the destructive effect of temperature on O2 sensing. A dual‐emission thin film of Mn‐doped halide perovskite nanocrystals (PNCs) (Mn:MAPb(Br/Cl)3) with a 50% PL quantum yield is used as the sensing layer, which is synthesized in situ. Through the sensing process, excitonic PL and the PL caused by Mn are used for detecting temperature and O2 partial pressures, respectively. Remarkably, the Mn PL intensity shows 40% decrement with increasing O2 partial pressures from 0% to 20%, while for the excitonic PL, intensity changes are less than 5%. As the temperature undesirably affects the sensing quantity, the O2 PL is used as an internal reference signal to achieve good accuracy and selectivity. Furthermore, the temperature variation is determined by measuring PL peak intensity change and wavelength shift. In addition to the O2 gas sensitivity of 1.55, a relative temperature sensitivity of −9.36% K−1 is also achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.