We introduce a two-parameter version of the two-step scale-splitting iteration method, called TTSCSP, for solving a broad class of complex symmetric system of linear equations. We present some conditions for the convergence of the method. An upper bound for the spectral radius of the method is presented and optimal parameters which minimize this bound are given. Inexact version of the TTSCSP iteration method (ITTSCSP) is also presented. Some numerical experiments are reported to verify the effectiveness of the TTSCSP iteration method and the numerical results are compared with those of the TSCSP, the SCSP and the PMHSS iteration methods. Numerical comparison of the ITTSCSP method with the inexact version of TSCSP, SCSP and PMHSS are presented. We also compare the numerical results of the BiCGSTAB method in conjunction with the TTSCSP and the ILU preconditioners.
We present a preconditioned version of the symmetric successive overrelaxation (SSOR) iteration method for a class of complex symmetric linear systems. The convergence results of the proposed method are established and conditions under which the spectral radius of the iteration matrix of the method is smaller than that of the SSOR method are analyzed. Numerical experiments illustrate the theoretical results and depict the efficiency of the new iteration method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.