BackgroundThe psychotomimetics ketamine and MK-801, non-competitive NMDA receptor (NMDAr) antagonists, induce cognitive impairment and aggravate schizophrenia symptoms. In conscious rats, they produce an abnormal behavior associated with a peculiar brain state characterized by increased synchronization in ongoing γ (30–80 Hz) oscillations in the frontoparietal (sensorimotor) electrocorticogram (ECoG). This study investigated whether NMDAr antagonists-induced aberrant γ oscillations are correlated with locomotion and dependent on hyperlocomotion-related sensorimotor processing. This also implied to explore the contribution of intracortical and subcortical networks in the generation of these pathophysiological ECoG γ oscillations.Methodology/Principal FindingsQuantitative locomotion data collected with a computer-assisted video tracking system in combination with ECoG revealed that ketamine and MK-801 induce highly correlated hyperlocomotion and aberrant γ oscillations. This abnormal γ hyperactivity was recorded over the frontal, parietal and occipital cortices. ECoG conducted under diverse consciousness states (with diverse anesthetics) revealed that NMDAr antagonists dramatically increase the power of basal γ oscillations. Paired ECoG and intracortical local field potential recordings showed that the ECoG mainly reflects γ oscillations recorded in underlying intracortical networks. In addition, multisite recordings revealed that NMDAr antagonists dramatically enhance the amount of ongoing γ oscillations in multiple cortical and subcortical structures, including the prefrontal cortex, accumbens, amygdala, basalis, hippocampus, striatum and thalamus.Conclusions/SignificanceNMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant γ oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized γ hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia.
MRI reveals potentially epileptogenic lesions in a minority of patients with a newly diagnosed seizure disorder. Lesions are most common in patients who have experienced focal seizures. The presence of a potentially epileptogenic MRI lesion did not influence the chance of having an abnormal EEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.