Oil and gas effluents contains highly toxic and harmful organic pollutants. Therefore, it is necessary to eliminate and/or reduced the concertation of organic pollutants to a technologically acceptable levels before their discharge into water streams. This study investigates the application of nanoscale zero-valent iron (nZVI), and hydrogen peroxide (H2O2) for removal of organic pollutants from real oily produced water. Batch studies were performed and effect of different operating parameters, including concentration of nZVI and H2O2, pH and reaction time were studied. Moreover, optimization of independent variables was performed using central composite design (CCD) in response surface methodology (RSM). The experimental set up provided maximum removal efficiencies of 89.5% and 75.3% for polycyclic aromatic hydrocarbons (PAHs) and chemical oxygen demand (COD), respectively. The optimum values of independent variables such as concentrations of nZVI, and H2O2, contact time and pH were obtained as 4.35 g/L, 1.60 g/L, 199.9 min and 2.9, respectively. Predicted PAHs and COD removal efficiencies at the optimum values of independent variables were found as 89.3% and 75.7%, respectively which are in line with the experimental values. The study indicates that application of heterogeneous Fenton like oxidation system using nZVI as a catalyst is an efficient treatment method for removal of organic pollutants from real produced water.
Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic contaminants made up of fused benzene rings. Their presence has been reported in several wastewater streams, including produced water (PW), which is the wastewater obtained during oil and gas extraction from onshore or offshore installations. In this study, ferrate (VI) oxidation was used for the first time for the treatment of 15 PAHs, with the total concentration of 1249.11 μg/L in the produced water sample. The operating parameters viz., ferrate (VI) dosage, pH, and contact time were optimized for maximum removal of PAHs and chemical oxygen demand (COD). Central composite design (CCD) based on response surface methodology (RSM) was used for optimization and modeling to evaluate the optimal values of operating parameters. PAH and COD removal percentages were selected as the dependent variables. The study showed that 89.73% of PAHs and 73.41% of COD were removed from PW at the optimal conditions of independent variables, i.e., ferrate (VI) concentration (19.35 mg/L), pH (7.1), and contact time (68.34 min). The high values of the coefficient of determination (R2) for PAH (96.50%) and COD (98.05%) removals show the accuracy and the suitability of the models. The results showed that ferrate (VI) oxidation was an efficient treatment method for the successful removal of PAHs and COD from PW. The study also revealed that RSM is an effective tool for the optimization of operating variables, which could significantly help to reduce the time and cost of experimentation.
The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron–hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.
Produced water (PW) is the abundant by-product of oil and gas industries. It contains several organic pollutants and needs proper treatment before its discharge. This study investigated the effectiveness of Ferrate (VI) (Fe6+) oxidation for remediation of the organic compounds produced water. A series of batch experiments were performed by ferrate oxidation method. A glass beaker of 1000 ml as reactor covered with aluminum foil was used to protect from sunlight. Produced water sample of 300 ml and a pre-decided amount of Fe6+ was added to initiate the oxidation process. All experiments were performed at constant magnetic stirrer speed of 200 rpm at room temperature. The Fe6+ dosage of 1-25 mg/l, pH 1-7, and contact time 5-90 minutes were used to determine the effectiveness of Fe6+ for organic compounds degradation. The COD removal was increased with the increase in Fe6+ dosage and contact time. The maximum COD removal was achieved with Fe6+ dosage up to 15 mg/l; further any increase in Fe6+ dosage decreased the COD removal. The same trend was observed for pH, COD removal was increased until pH 5 beyond that COD removal was decreased. Maximum 55% of COD removal was attained under optimum conditions such as pH, Fe6+ dosage, and contact time were 5, 15mg/l and 50mins respectively. The results indicate that Ferrate (VI) oxidation is a promising method for the degradation of organic compounds in produced water.
Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic functional groups on the surface results in excellent photocatalytic hydrogen evolution. In addition, MXenes’ surface defects provide abundant CO2 adsorption sites. Moreover, their highly efficient catalytic oxidation activity is a result of their excellent two-dimensional nanomaterial structure and high-speed electron transport channels. This article, comprehensively discusses the structure, synthesis techniques, photocatalytic applications (i.e., H2 evolution, N2 fixation, CO2 reduction, and degradation of pollutants), and recyclability of MXenes. This review also critically evaluates the MXene-based heterostructure and composites photocatalyst synthesis process and their performance for organic pollutant degradation. Finally, a prospect for further research is presented in environmental and energy sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.