Transgenic plants containing Bacillus thuringiensis (Bt) genes are being cultivated worldwide to express toxic insecticidal proteins. However, the commercial utilisation of Bt crops greatly highlights biosafety issues worldwide. Therefore, assessing the risks caused by genetically modified crops prior to their commercial cultivation is a critical issue to be addressed. In agricultural biotechnology, the goal of safety assessment is not just to identify the safety of a genetically modified (GM) plant, rather to demonstrate its impact on the ecosystem. Various experimental studies have been made worldwide during the last 20 years to investigate the risks and fears associated with non-target organisms (NTOs). The NTOs include beneficial insects, natural pest controllers, rhizobacteria, growth promoting microbes, pollinators, soil dwellers, aquatic and terrestrial vertebrates, mammals and humans. To highlight all the possible risks associated with different GM events, information has been gathered from a total of 76 articles, regarding non-target plant and soil inhabiting organisms, and summarised in the form of the current review article. No significant harmful impact has been reported in any case study related to approved GM events, although critical risk assessments are still needed before commercialisation of these crops. © 2016 Society of Chemical Industry.
Background: Transgenic plants inhabiting single Bt gene are prone to develop insect resistance and this resistance has been reported in case of some important yield-devastating insect larvae of commercial crops, such as cotton and rice. Therefore, it has become essential to adapt new strategies to overcome the problem of insect resistance and these new strategies should be sophisticated enough to target such resistant larvae in broad spectrum. Among these, plants may be transformed with Bt gene tagged with some fusion-protein gene that possesses lectin-binding capability to boost the binding sites for crystal protein gene within insect mid-gut in order to overcome any chances of insect tolerance against Bt toxin. Enhanced chloroplast-targeted Bt gene expression can also help in the reduction of insect resistance. Results: In the present investigation, a combined effect of both these strategies was successfully used in cotton (G. hirsutum). For this purpose, plant expression vector pKian-1 was created, after a series of cloning steps, carrying Cry1Ac gene ligated with chloroplast transit peptide towards N-terminal and Ricin B-Chain towards C-terminal, generating TP-Cry1Ac-RB construct. Conclusions: Efficacy of pKian-1 plasmid vector was confirmed by in-planta Agrobacterium-mediated leaf GUS assay in tobacco. Cotton (G. hirsutum) local variety MNH-786 was transformed with pKian-1 and the stable integration of TP-Cry1Ac-RB construct in putative transgenic plants was confirmed by PCR; while fusion-protein expression in cytosol as well as chloroplast was substantiated by Western blot analysis. Whereas, confocal microscopy of leaf-sections of transgenic plants exposed that hybridBt protein was expressing inside chloroplasts.
Newcastle disease (ND) is a viral disease that causes labored breathing, periorbital oedema, and ataxia in the majority of avian species. The available vaccines against Newcastle disease virus (NDV) are limited, owing to their low reactivity and multiple dosage requirements. Plant-based machinery provides an attractive and safe system for vaccine production. In the current study, we attempted to express fusion (F) and hemagglutinin-neuraminidase (HN) proteins (the protective antigens against NDV) under constitutive 35S and seed-specific Zein promoters, respectively. Almost 2-7.1-fold higher expression of F gene mRNA in transgenic corn leaves and 8-28-fold higher expression of HN gene mRNA in transgenic corn seeds were observed, when the expression was analyzed by real-time PCR on a relative basis as compared to non-transgenic control plant material (Leaves and seeds). Similarly, 1.66 µg/ml of F protein in corn leaves, i.e., 0.5% of total soluble protein, and 2.4 µg/ml of HN protein in corn seed, i.e., 0.8% of total seed protein, were found when calculated through ELISA. Similar levels of immunological response were generated in chicks immunized through injection of E. coli-produced pET F and pET HN protein as in chickens orally fed leaves and seeds of maize with expressed immunogenic protein. Moreover, the detection of anti-NDV antibodies in the sera of chickens that were fed maize with immunogenic protein, and the absence of these antibodies in chickens fed a normal diet, confirmed the specificity of the antibodies generated through feeding, and demonstrated the potential of utilizing plants for producing more vaccine doses, vaccine generation at higher levels and against other infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.